This code reads packetloss data for one site and runs anomaly detection on it.


In [1]:
%matplotlib inline
from elasticsearch import Elasticsearch
from elasticsearch.helpers import scan

import numpy as np
import pandas as pd
import random
import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

from sklearn.model_selection import cross_val_score
from sklearn.ensemble import AdaBoostClassifier
from sklearn import tree
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import roc_curve, auc

from sklearn import tree

from sklearn.metrics import roc_curve, auc

from pandas.tseries.offsets import *

from graphviz import Source

parameters to set


In [2]:
n_series = 20
start_date = '2017-08-01 00:00:00'
end_date = '2017-08-07 23:59:59'

# tuning parameters
cut = 0.75
ref = 48 * Hour()
sub = 1 * Hour()

sS='CERN-PROD'
srcSiteOWDServer = "128.142.223.247"

dS='pic'
destSiteOWDServer = "193.109.172.188"

get data from ES


In [3]:
es = Elasticsearch(['atlas-kibana.mwt2.org:9200'],timeout=60)
indices = "network_weather-2017.8.*"

start = pd.Timestamp(start_date)
end   = pd.Timestamp(end_date)

my_query = {
    'query': { 
       'bool':{
            'must':[
                    {'range': {'timestamp': {'gte': start.strftime('%Y%m%dT%H%M00Z'), 'lt': end.strftime('%Y%m%dT%H%M00Z')}}},
                    {'term': {'src': srcSiteOWDServer}},
                    {'term': {'_type': 'packet_loss_rate'}}
                   ]
            }
        }
    }


scroll = list(scan(client=es, index=indices, query=my_query))

scan the data


In [4]:
count = 0
allData={} # will be like this: {'dest_host':[[timestamp],[value]], ...} 
for res in scroll:
#     if count<2: print(res)
    if not count%100000: print(count)
    if count>1000000: break
    dst = res['_source']['dest_host']
    if dst not in allData: allData[dst]=[[],[]]
    allData[dst][0].append(res['_source']['timestamp'] )
    allData[dst][1].append(res['_source']['packet_loss'])
    
    count=count+1

dfs=[]
for dest,data in allData.items():
    ts=pd.to_datetime(data[0],unit='ms')
    df=pd.DataFrame({dest:data[1]}, index=ts )
    df.sort_index(inplace=True)
    df.index = df.index.map(lambda t: t.replace(second=0))
    df = df[~df.index.duplicated(keep='last')]
    dfs.append(df)
    #print(df.head(2))


0
100000
200000
300000
400000
500000
600000
700000
800000
900000
1000000

In [5]:
full_df = pd.concat(dfs, axis=1)

In [6]:
print(full_df.shape)
# full_df.head()
#print(full_df.columns )


(9809, 86)

plot timeseries


In [7]:
full_df.iloc[:,0:n_series].plot(figsize=(20,7))


Out[7]:
<matplotlib.axes._subplots.AxesSubplot at 0x7f3180479a58>

functions


In [8]:
def check_for_anomaly(ref, sub):
    
    y_ref = pd.Series([0] * ref.shape[0])
    X_ref = ref
    
    y_sub = pd.Series([1] * sub.shape[0])
    X_sub = sub
    
    # separate Reference and Subject into Train and Test
    X_ref_train, X_ref_test, y_ref_train, y_ref_test = train_test_split(X_ref, y_ref, test_size=0.3, random_state=42)
    X_sub_train, X_sub_test, y_sub_train, y_sub_test = train_test_split(X_sub, y_sub, test_size=0.3, random_state=42)
    
    # combine training ref and sub samples
    X_train = pd.concat([X_ref_train, X_sub_train])
    y_train = pd.concat([y_ref_train, y_sub_train])

    # combine testing ref and sub samples
    X_test = pd.concat([X_ref_test, X_sub_test])
    y_test = pd.concat([y_ref_test, y_sub_test])
    
#     dtc=DecisionTreeClassifier()
    clf = AdaBoostClassifier() #dtc
#     clf = AdaBoostClassifier(DecisionTreeClassifier(max_depth=1),algorithm="SAMME",n_estimators=200)
    
    #train an AdaBoost model to be able to tell the difference between the reference and subject data
#     with pd.option_context('display.max_rows', 10000, 'display.max_columns', 10):
#         print(X_train)
    clf.fit(X_train, y_train) 

    #Predict using the combined test data
    y_predict = clf.predict(X_test)
    
    # scores = cross_val_score(clf, X, y)
    # print(scores)
    
    fpr, tpr, thresholds = roc_curve(y_test, y_predict) # calculate the false positive rate and true positive rate
    auc_score = auc(fpr, tpr) #calculate the AUC score
    print ("auc_score = ", auc_score, "\tfeature importances:", clf.feature_importances_)
    
    if auc_score > cut: 
        plot_roc(fpr, tpr, auc_score)
#         filename='tree_'+sub.index.min().strftime("%Y-%m-%d_%H")
#         tree.export_graphviz(clf.estimators_[0] , out_file=filename +'_1.dot') 
#         tree.export_graphviz(clf.estimators_[1] , out_file=filename +'_2.dot') 
        
    return auc_score

In [9]:
def plot_roc(fpr,tpr, roc_auc):
    plt.figure()
    plt.plot(fpr, tpr, color='darkorange', label='ROC curve (area = %0.2f)' % roc_auc)
    plt.plot([0, 1], [0, 1], color='navy', linestyle='--')
    plt.xlim([0.0, 1.0])
    plt.ylim([0.0, 1.05])
    plt.plot([0, 1], [0, 1], linestyle='--', color='r',label='Luck', alpha=.8)
    plt.xlabel('False Positive Rate')
    plt.ylabel('True Positive Rate')
    plt.title('Receiver operating characteristic')
    plt.legend(loc="lower right")
    plt.show()

fix NANs


In [10]:
# full_df = full_df.interpolate(method='time', axis=0)  #these don't work for some reason...
# full_df.interpolate(method='nearest', axis=0, inplace=True)
full_df.fillna(0, inplace=True)

select part of the data


In [11]:
df = full_df#.iloc[:,0:n_series]
auc_df = pd.DataFrame(np.nan, index=df.index, columns=['auc_score'])

Looping over time intervals


In [12]:
#find min and max timestamps

lstart = df.index.min()
lend = df.index.max()

#round start 
lstart.seconds=0
lstart.minutes=0

# loop over them
ti = lstart + ref + sub
count = 0
while ti < lend + 1 * Minute():
    print(count)
    ref_start = ti-ref-sub
    ref_end = ti-sub
    ref_df = df[(df.index >= ref_start) & (df.index < ref_end)]
    sub_df = df[(df.index >= ref_end) & (df.index < ti)]
    auc_score = check_for_anomaly(ref_df, sub_df)
    auc_df.loc[(auc_df.index >= ref_end) & (auc_df.index < ti), ['auc_score']]  = auc_score
    print(ti,"\trefes:" , ref_df.shape, "\tsubjects:", sub_df.shape, '\tauc:', auc_score)
    ti = ti + sub
    count = count + 1
    #if count>2: break


0
auc_score =  0.498817966903 	feature importances: [ 0.    0.    0.02  0.    0.    0.    0.    0.04  0.    0.02  0.    0.02
  0.02  0.02  0.    0.    0.    0.06  0.04  0.    0.    0.    0.    0.02
  0.    0.    0.    0.02  0.    0.02  0.    0.    0.06  0.    0.    0.
  0.02  0.    0.02  0.    0.02  0.    0.    0.02  0.    0.    0.    0.    0.
  0.    0.12  0.02  0.04  0.02  0.    0.    0.1   0.02  0.    0.    0.
  0.02  0.    0.02  0.02  0.    0.02  0.    0.    0.02  0.    0.    0.
  0.02  0.    0.    0.    0.    0.    0.02  0.04  0.    0.02  0.02  0.
  0.02]
2017-08-03 01:00:00 	refes: (2820, 86) 	subjects: (60, 86) 	auc: 0.498817966903
1
auc_score =  0.526595744681 	feature importances: [ 0.    0.    0.02  0.    0.    0.02  0.    0.1   0.    0.02  0.    0.02
  0.    0.02  0.    0.    0.    0.06  0.02  0.    0.    0.    0.    0.    0.
  0.    0.    0.02  0.    0.02  0.    0.    0.    0.    0.    0.    0.02
  0.    0.    0.    0.    0.    0.    0.02  0.    0.    0.    0.    0.02
  0.02  0.12  0.06  0.04  0.02  0.    0.    0.06  0.04  0.02  0.    0.    0.
  0.    0.02  0.    0.    0.02  0.    0.    0.02  0.02  0.    0.    0.02
  0.    0.    0.    0.    0.    0.02  0.06  0.02  0.02  0.    0.    0.02]
2017-08-03 02:00:00 	refes: (2820, 86) 	subjects: (60, 86) 	auc: 0.526595744681
2
auc_score =  0.552600472813 	feature importances: [ 0.    0.    0.06  0.    0.    0.02  0.    0.06  0.02  0.    0.    0.    0.
  0.02  0.    0.    0.    0.04  0.04  0.    0.    0.    0.    0.    0.    0.
  0.    0.02  0.    0.02  0.    0.    0.02  0.    0.    0.    0.02  0.
  0.02  0.    0.02  0.    0.    0.02  0.    0.02  0.    0.    0.02  0.
  0.02  0.04  0.12  0.02  0.    0.    0.1   0.06  0.02  0.    0.    0.    0.
  0.02  0.    0.    0.02  0.    0.    0.02  0.    0.    0.    0.02  0.
  0.02  0.    0.    0.02  0.02  0.02  0.    0.    0.02  0.    0.  ]
2017-08-03 03:00:00 	refes: (2820, 86) 	subjects: (60, 86) 	auc: 0.552600472813
3
auc_score =  0.68853427896 	feature importances: [ 0.    0.    0.    0.    0.    0.02  0.    0.02  0.02  0.02  0.    0.14
  0.    0.02  0.    0.    0.    0.08  0.04  0.    0.    0.    0.    0.    0.
  0.    0.    0.    0.    0.02  0.    0.    0.    0.    0.02  0.    0.    0.
  0.    0.    0.02  0.    0.    0.    0.    0.    0.    0.    0.02  0.
  0.14  0.04  0.06  0.02  0.    0.    0.04  0.04  0.    0.    0.    0.    0.
  0.02  0.02  0.    0.02  0.02  0.    0.02  0.    0.    0.    0.02  0.    0.
  0.    0.    0.02  0.    0.02  0.02  0.02  0.    0.    0.02]
2017-08-03 04:00:00 	refes: (2820, 86) 	subjects: (60, 86) 	auc: 0.68853427896
4
auc_score =  0.580969267139 	feature importances: [ 0.    0.    0.    0.    0.    0.02  0.    0.02  0.02  0.02  0.    0.1   0.
  0.02  0.    0.    0.    0.1   0.02  0.    0.    0.    0.    0.02  0.    0.
  0.    0.    0.    0.1   0.    0.    0.    0.    0.    0.    0.02  0.
  0.02  0.    0.02  0.    0.    0.    0.    0.02  0.    0.    0.    0.
  0.18  0.    0.06  0.02  0.    0.    0.1   0.04  0.    0.    0.    0.    0.
  0.    0.    0.    0.    0.    0.    0.    0.    0.    0.    0.02  0.    0.
  0.    0.    0.    0.    0.02  0.02  0.    0.    0.    0.02]
2017-08-03 05:00:00 	refes: (2820, 86) 	subjects: (60, 86) 	auc: 0.580969267139
5
auc_score =  0.664302600473 	feature importances: [ 0.    0.    0.    0.    0.    0.02  0.    0.06  0.    0.02  0.    0.06
  0.02  0.06  0.    0.    0.    0.    0.04  0.    0.    0.    0.    0.    0.
  0.    0.    0.02  0.    0.04  0.    0.    0.    0.02  0.    0.    0.02
  0.    0.02  0.    0.    0.    0.    0.02  0.    0.04  0.    0.    0.    0.
  0.06  0.02  0.06  0.02  0.    0.    0.14  0.02  0.    0.    0.    0.    0.
  0.02  0.02  0.    0.02  0.    0.    0.02  0.    0.    0.    0.02  0.    0.
  0.    0.    0.02  0.02  0.02  0.02  0.02  0.    0.    0.02]
2017-08-03 06:00:00 	refes: (2820, 86) 	subjects: (60, 86) 	auc: 0.664302600473
6
auc_score =  0.604609929078 	feature importances: [ 0.    0.    0.02  0.    0.    0.    0.    0.02  0.02  0.    0.    0.06
  0.02  0.04  0.    0.    0.    0.06  0.    0.02  0.    0.    0.    0.    0.
  0.    0.    0.    0.    0.02  0.    0.    0.    0.02  0.    0.    0.02
  0.    0.02  0.    0.02  0.    0.    0.02  0.    0.    0.    0.    0.02
  0.    0.22  0.    0.02  0.    0.    0.    0.02  0.02  0.    0.    0.
  0.02  0.    0.02  0.02  0.    0.02  0.02  0.    0.02  0.    0.02  0.
  0.02  0.    0.    0.    0.    0.02  0.02  0.04  0.02  0.04  0.    0.
  0.02]
2017-08-03 07:00:00 	refes: (2820, 86) 	subjects: (60, 86) 	auc: 0.604609929078
7
auc_score =  0.663711583924 	feature importances: [ 0.    0.    0.    0.    0.    0.02  0.02  0.04  0.    0.02  0.    0.1   0.
  0.    0.    0.    0.    0.04  0.02  0.    0.    0.    0.    0.    0.    0.
  0.    0.    0.    0.02  0.    0.    0.    0.    0.    0.    0.02  0.    0.2
  0.    0.    0.    0.    0.    0.    0.04  0.    0.    0.    0.    0.12
  0.02  0.06  0.04  0.    0.    0.02  0.    0.    0.    0.    0.    0.
  0.04  0.    0.    0.04  0.    0.    0.02  0.    0.    0.    0.    0.    0.
  0.    0.    0.    0.    0.04  0.    0.02  0.04  0.    0.  ]
2017-08-03 08:00:00 	refes: (2820, 86) 	subjects: (60, 86) 	auc: 0.663711583924
8
auc_score =  0.718676122931 	feature importances: [ 0.    0.    0.    0.    0.    0.02  0.    0.    0.    0.02  0.    0.04
  0.    0.02  0.    0.    0.    0.14  0.04  0.    0.    0.    0.    0.    0.
  0.    0.    0.02  0.    0.02  0.    0.    0.    0.    0.02  0.    0.02
  0.    0.06  0.    0.    0.    0.    0.    0.    0.04  0.    0.    0.    0.
  0.02  0.    0.06  0.02  0.    0.    0.02  0.04  0.    0.    0.    0.    0.
  0.02  0.    0.    0.2   0.    0.    0.02  0.02  0.    0.    0.    0.    0.
  0.    0.    0.    0.    0.02  0.02  0.02  0.06  0.    0.  ]
2017-08-03 09:00:00 	refes: (2820, 86) 	subjects: (60, 86) 	auc: 0.718676122931
9
auc_score =  0.63475177305 	feature importances: [ 0.    0.    0.    0.    0.    0.02  0.    0.1   0.02  0.04  0.    0.02
  0.    0.06  0.    0.    0.    0.06  0.02  0.    0.    0.    0.    0.    0.
  0.    0.    0.    0.    0.    0.    0.    0.04  0.    0.02  0.    0.02
  0.    0.08  0.    0.02  0.    0.    0.    0.    0.06  0.    0.02  0.    0.
  0.04  0.    0.02  0.02  0.    0.    0.04  0.08  0.    0.    0.    0.02
  0.    0.    0.    0.    0.12  0.    0.    0.    0.    0.    0.    0.    0.
  0.    0.    0.    0.    0.    0.02  0.02  0.    0.    0.    0.02]
2017-08-03 10:00:00 	refes: (2820, 86) 	subjects: (60, 86) 	auc: 0.63475177305
10
auc_score =  0.608747044917 	feature importances: [ 0.    0.    0.    0.    0.    0.02  0.    0.06  0.    0.04  0.    0.02
  0.    0.02  0.    0.    0.    0.04  0.02  0.    0.    0.    0.    0.    0.
  0.    0.    0.    0.    0.02  0.    0.    0.    0.    0.04  0.    0.02
  0.    0.06  0.02  0.02  0.    0.    0.    0.    0.02  0.    0.    0.    0.
  0.1   0.02  0.04  0.04  0.    0.    0.06  0.02  0.    0.    0.    0.04
  0.    0.    0.02  0.    0.1   0.    0.    0.02  0.    0.    0.    0.02
  0.    0.    0.    0.    0.    0.02  0.02  0.02  0.02  0.    0.    0.02]
2017-08-03 11:00:00 	refes: (2820, 86) 	subjects: (60, 86) 	auc: 0.608747044917
11
auc_score =  0.716903073286 	feature importances: [ 0.    0.    0.    0.    0.    0.02  0.    0.06  0.    0.02  0.    0.02
  0.    0.    0.    0.    0.    0.02  0.04  0.    0.    0.    0.    0.    0.
  0.    0.    0.    0.    0.02  0.    0.    0.    0.    0.02  0.    0.02
  0.    0.04  0.02  0.02  0.    0.    0.    0.    0.    0.    0.    0.02
  0.    0.16  0.02  0.02  0.04  0.    0.    0.02  0.04  0.02  0.    0.    0.
  0.    0.02  0.    0.    0.12  0.    0.    0.02  0.    0.    0.    0.    0.
  0.02  0.    0.    0.08  0.02  0.02  0.02  0.02  0.    0.    0.  ]
2017-08-03 12:00:00 	refes: (2820, 86) 	subjects: (60, 86) 	auc: 0.716903073286
12
auc_score =  0.602245862884 	feature importances: [ 0.    0.    0.    0.    0.    0.02  0.    0.04  0.    0.    0.    0.02
  0.    0.02  0.    0.    0.    0.08  0.04  0.02  0.    0.    0.    0.    0.
  0.    0.    0.04  0.    0.    0.    0.    0.    0.    0.    0.    0.    0.
  0.16  0.    0.    0.    0.    0.    0.    0.04  0.    0.    0.02  0.
  0.16  0.02  0.04  0.06  0.    0.    0.02  0.02  0.    0.    0.    0.    0.
  0.    0.    0.    0.08  0.    0.    0.    0.    0.    0.    0.02  0.    0.
  0.    0.    0.02  0.    0.02  0.02  0.    0.02  0.    0.  ]
2017-08-03 13:00:00 	refes: (2820, 86) 	subjects: (60, 86) 	auc: 0.602245862884
13
auc_score =  0.637706855792 	feature importances: [ 0.    0.    0.    0.    0.    0.04  0.    0.06  0.    0.04  0.    0.02
  0.    0.    0.    0.    0.02  0.02  0.02  0.    0.    0.    0.    0.    0.
  0.    0.    0.04  0.    0.    0.    0.02  0.    0.04  0.    0.    0.02
  0.    0.06  0.    0.    0.    0.    0.    0.    0.    0.    0.    0.    0.
  0.12  0.    0.06  0.02  0.    0.    0.02  0.04  0.    0.    0.    0.02
  0.    0.02  0.    0.    0.08  0.    0.    0.02  0.    0.    0.    0.02
  0.    0.02  0.02  0.    0.02  0.    0.08  0.02  0.02  0.    0.    0.  ]
2017-08-03 14:00:00 	refes: (2820, 86) 	subjects: (60, 86) 	auc: 0.637706855792
14
auc_score =  0.664893617021 	feature importances: [ 0.    0.    0.    0.    0.    0.08  0.    0.04  0.02  0.02  0.    0.02
  0.02  0.02  0.    0.    0.    0.02  0.02  0.    0.    0.    0.    0.    0.
  0.    0.    0.04  0.    0.    0.    0.    0.    0.04  0.02  0.    0.02
  0.    0.1   0.    0.    0.    0.    0.    0.    0.    0.    0.    0.    0.
  0.22  0.    0.02  0.    0.    0.    0.02  0.04  0.    0.    0.    0.    0.
  0.    0.    0.    0.08  0.    0.    0.02  0.    0.    0.    0.02  0.    0.
  0.    0.    0.02  0.02  0.02  0.    0.02  0.02  0.    0.  ]
2017-08-03 15:00:00 	refes: (2820, 86) 	subjects: (60, 86) 	auc: 0.664893617021
15
auc_score =  0.635933806147 	feature importances: [ 0.    0.    0.02  0.    0.    0.1   0.    0.02  0.02  0.02  0.    0.    0.
  0.    0.    0.    0.    0.04  0.02  0.    0.    0.    0.    0.    0.    0.
  0.    0.02  0.    0.    0.    0.02  0.    0.04  0.02  0.    0.    0.
  0.04  0.    0.02  0.    0.    0.    0.    0.    0.    0.    0.    0.    0.2
  0.04  0.02  0.02  0.    0.    0.02  0.04  0.    0.    0.    0.02  0.    0.
  0.    0.    0.08  0.    0.    0.02  0.    0.    0.    0.    0.    0.02
  0.02  0.    0.    0.06  0.02  0.02  0.    0.    0.    0.  ]
2017-08-03 16:00:00 	refes: (2820, 86) 	subjects: (60, 86) 	auc: 0.635933806147
16
auc_score =  0.635342789598 	feature importances: [ 0.    0.    0.02  0.    0.    0.06  0.    0.06  0.    0.04  0.    0.02
  0.    0.02  0.    0.02  0.    0.02  0.02  0.    0.    0.    0.    0.    0.
  0.    0.    0.08  0.    0.    0.    0.02  0.    0.    0.    0.02  0.02
  0.    0.02  0.    0.02  0.    0.    0.    0.    0.02  0.    0.    0.    0.
  0.02  0.    0.04  0.08  0.    0.    0.02  0.08  0.    0.    0.    0.    0.
  0.02  0.    0.02  0.06  0.    0.    0.02  0.    0.    0.    0.02  0.
  0.02  0.02  0.    0.02  0.04  0.02  0.02  0.    0.    0.    0.  ]
2017-08-03 17:00:00 	refes: (2820, 86) 	subjects: (60, 86) 	auc: 0.635342789598
17
auc_score =  0.606973995272 	feature importances: [ 0.    0.    0.02  0.    0.    0.04  0.    0.02  0.02  0.04  0.    0.02
  0.02  0.04  0.    0.    0.    0.04  0.02  0.    0.    0.    0.    0.    0.
  0.    0.    0.1   0.    0.    0.    0.    0.    0.    0.    0.    0.02
  0.    0.02  0.    0.02  0.    0.    0.    0.    0.02  0.    0.    0.    0.
  0.04  0.02  0.04  0.02  0.    0.    0.02  0.06  0.    0.    0.    0.    0.
  0.02  0.02  0.02  0.04  0.    0.    0.    0.02  0.    0.    0.02  0.    0.
  0.02  0.    0.02  0.06  0.02  0.04  0.02  0.02  0.    0.  ]
2017-08-03 18:00:00 	refes: (2820, 86) 	subjects: (60, 86) 	auc: 0.606973995272
18
auc_score =  0.633569739953 	feature importances: [ 0.    0.    0.    0.    0.    0.02  0.    0.1   0.02  0.06  0.    0.02
  0.    0.02  0.    0.    0.    0.    0.02  0.    0.    0.    0.    0.    0.
  0.    0.    0.02  0.    0.    0.    0.02  0.    0.    0.    0.02  0.02
  0.    0.02  0.    0.    0.    0.    0.    0.    0.02  0.    0.    0.    0.
  0.02  0.    0.02  0.04  0.02  0.    0.04  0.04  0.    0.    0.    0.02
  0.    0.02  0.    0.04  0.16  0.    0.    0.    0.    0.    0.    0.02
  0.    0.    0.02  0.    0.02  0.02  0.08  0.02  0.    0.    0.    0.02]
2017-08-03 19:00:00 	refes: (2820, 86) 	subjects: (60, 86) 	auc: 0.633569739953
19
auc_score =  0.553191489362 	feature importances: [ 0.    0.    0.    0.    0.    0.02  0.    0.02  0.02  0.04  0.    0.02
  0.    0.02  0.    0.    0.    0.02  0.02  0.    0.    0.    0.    0.    0.
  0.    0.    0.02  0.02  0.    0.    0.    0.    0.04  0.02  0.    0.    0.
  0.04  0.    0.02  0.    0.    0.02  0.    0.02  0.    0.    0.02  0.
  0.02  0.06  0.04  0.02  0.    0.    0.1   0.06  0.    0.    0.    0.02
  0.    0.02  0.    0.02  0.06  0.    0.    0.02  0.    0.    0.    0.02
  0.    0.02  0.    0.    0.02  0.02  0.02  0.    0.02  0.02  0.    0.02]
2017-08-03 20:00:00 	refes: (2820, 86) 	subjects: (60, 86) 	auc: 0.553191489362
20
auc_score =  0.553191489362 	feature importances: [ 0.    0.    0.04  0.    0.    0.02  0.    0.1   0.    0.    0.    0.02
  0.02  0.02  0.    0.    0.    0.04  0.02  0.    0.    0.    0.    0.    0.
  0.    0.    0.02  0.    0.    0.    0.02  0.    0.04  0.02  0.02  0.    0.
  0.02  0.    0.02  0.    0.    0.    0.02  0.02  0.    0.    0.02  0.
  0.06  0.02  0.06  0.04  0.    0.    0.04  0.06  0.    0.    0.    0.02
  0.    0.02  0.    0.    0.08  0.    0.    0.02  0.    0.    0.    0.02
  0.    0.    0.    0.    0.    0.    0.02  0.04  0.    0.    0.    0.  ]
2017-08-03 21:00:00 	refes: (2820, 86) 	subjects: (60, 86) 	auc: 0.553191489362
21
auc_score =  0.580378250591 	feature importances: [ 0.    0.    0.    0.    0.    0.02  0.    0.12  0.02  0.02  0.    0.02
  0.02  0.02  0.    0.    0.    0.    0.    0.    0.    0.    0.    0.    0.
  0.    0.    0.02  0.    0.    0.    0.    0.    0.02  0.02  0.    0.02
  0.    0.04  0.    0.    0.    0.    0.02  0.    0.06  0.    0.    0.    0.
  0.1   0.02  0.02  0.    0.    0.    0.04  0.06  0.    0.    0.    0.02
  0.    0.02  0.    0.02  0.08  0.    0.    0.04  0.    0.    0.    0.    0.
  0.    0.    0.    0.02  0.    0.04  0.02  0.02  0.02  0.    0.02]
2017-08-03 22:00:00 	refes: (2820, 86) 	subjects: (60, 86) 	auc: 0.580378250591
22
auc_score =  0.525413711584 	feature importances: [ 0.    0.    0.    0.    0.    0.04  0.    0.02  0.02  0.02  0.02  0.02
  0.02  0.02  0.    0.    0.    0.06  0.    0.    0.    0.    0.    0.    0.
  0.    0.    0.02  0.    0.    0.    0.    0.    0.    0.02  0.02  0.    0.
  0.02  0.    0.    0.    0.    0.02  0.    0.02  0.    0.02  0.    0.
  0.08  0.06  0.02  0.04  0.    0.    0.02  0.02  0.    0.    0.    0.    0.
  0.    0.    0.02  0.12  0.    0.    0.02  0.    0.    0.    0.02  0.    0.
  0.02  0.    0.02  0.06  0.02  0.02  0.02  0.02  0.    0.02]
2017-08-03 23:00:00 	refes: (2820, 86) 	subjects: (60, 86) 	auc: 0.525413711584
23
auc_score =  0.498226950355 	feature importances: [ 0.    0.    0.    0.    0.    0.02  0.    0.1   0.02  0.02  0.    0.02
  0.02  0.02  0.    0.    0.    0.02  0.02  0.    0.    0.    0.    0.    0.
  0.    0.    0.02  0.    0.02  0.    0.    0.02  0.02  0.    0.    0.02
  0.    0.02  0.    0.02  0.    0.    0.    0.    0.04  0.    0.02  0.    0.
  0.02  0.02  0.02  0.02  0.    0.    0.02  0.02  0.    0.    0.    0.    0.
  0.    0.    0.    0.26  0.02  0.    0.02  0.    0.    0.    0.02  0.    0.
  0.    0.    0.02  0.02  0.02  0.02  0.    0.02  0.    0.  ]
2017-08-04 00:00:00 	refes: (2820, 86) 	subjects: (24, 86) 	auc: 0.498226950355
24
auc_score =  0.526585882665 	feature importances: [ 0.    0.    0.    0.    0.    0.02  0.    0.04  0.    0.02  0.    0.02
  0.02  0.02  0.    0.    0.    0.06  0.02  0.    0.    0.    0.    0.    0.
  0.    0.    0.    0.    0.    0.    0.    0.02  0.04  0.02  0.    0.02
  0.    0.02  0.    0.02  0.    0.    0.02  0.    0.02  0.    0.    0.    0.
  0.1   0.    0.02  0.    0.    0.    0.04  0.04  0.    0.    0.    0.04
  0.    0.    0.    0.    0.1   0.    0.    0.    0.    0.    0.    0.    0.
  0.    0.02  0.    0.02  0.02  0.1   0.02  0.02  0.04  0.    0.02]
2017-08-04 01:00:00 	refes: (2795, 86) 	subjects: (60, 86) 	auc: 0.526585882665
25
auc_score =  0.580949543107 	feature importances: [ 0.    0.    0.    0.    0.    0.02  0.    0.04  0.    0.02  0.    0.02
  0.    0.    0.    0.    0.    0.    0.02  0.    0.    0.    0.    0.    0.
  0.    0.02  0.    0.    0.    0.    0.    0.    0.02  0.02  0.    0.02
  0.    0.02  0.    0.    0.02  0.    0.02  0.    0.02  0.    0.    0.
  0.02  0.12  0.    0.06  0.02  0.    0.    0.14  0.08  0.    0.    0.
  0.04  0.    0.    0.    0.    0.06  0.    0.    0.    0.    0.    0.
  0.02  0.    0.02  0.    0.    0.02  0.02  0.02  0.02  0.02  0.02  0.
  0.02]
2017-08-04 02:00:00 	refes: (2795, 86) 	subjects: (60, 86) 	auc: 0.580949543107
26
auc_score =  0.497616209774 	feature importances: [ 0.    0.    0.    0.    0.    0.    0.    0.08  0.02  0.    0.    0.02
  0.    0.02  0.    0.    0.    0.06  0.02  0.    0.    0.    0.    0.    0.
  0.    0.    0.02  0.    0.    0.    0.    0.    0.04  0.02  0.    0.02
  0.    0.02  0.    0.    0.02  0.    0.    0.    0.    0.    0.    0.02
  0.    0.08  0.02  0.02  0.02  0.    0.    0.1   0.04  0.    0.    0.
  0.02  0.    0.06  0.    0.    0.14  0.    0.    0.    0.    0.02  0.
  0.02  0.    0.    0.    0.    0.02  0.02  0.02  0.    0.    0.02  0.    0.  ]
2017-08-04 03:00:00 	refes: (2795, 86) 	subjects: (60, 86) 	auc: 0.497616209774
27
auc_score =  0.525989935108 	feature importances: [ 0.    0.    0.    0.    0.    0.04  0.    0.    0.    0.04  0.    0.02
  0.02  0.02  0.    0.    0.    0.08  0.    0.    0.    0.    0.    0.    0.
  0.    0.06  0.02  0.    0.    0.    0.02  0.    0.    0.02  0.    0.02
  0.    0.02  0.    0.    0.    0.    0.02  0.02  0.    0.    0.    0.02
  0.    0.1   0.02  0.04  0.04  0.    0.    0.02  0.04  0.    0.    0.    0.
  0.    0.02  0.    0.    0.06  0.    0.    0.02  0.    0.    0.    0.02
  0.    0.    0.02  0.    0.02  0.02  0.02  0.04  0.02  0.02  0.    0.02]
2017-08-04 04:00:00 	refes: (2795, 86) 	subjects: (60, 86) 	auc: 0.525989935108
28
auc_score =  0.49821215733 	feature importances: [ 0.    0.    0.    0.    0.    0.04  0.    0.04  0.    0.04  0.    0.02
  0.02  0.02  0.    0.02  0.    0.04  0.    0.    0.    0.    0.    0.    0.
  0.    0.    0.02  0.    0.    0.    0.    0.    0.02  0.02  0.    0.    0.
  0.02  0.    0.    0.    0.    0.    0.    0.02  0.    0.    0.04  0.02
  0.1   0.02  0.04  0.02  0.    0.    0.02  0.04  0.    0.    0.    0.    0.
  0.02  0.02  0.02  0.06  0.    0.    0.06  0.    0.    0.    0.    0.
  0.02  0.    0.    0.02  0.02  0.06  0.02  0.04  0.    0.    0.  ]
2017-08-04 05:00:00 	refes: (2795, 86) 	subjects: (60, 86) 	auc: 0.49821215733
29
auc_score =  0.552575817772 	feature importances: [ 0.    0.    0.02  0.    0.    0.    0.    0.12  0.02  0.02  0.    0.02
  0.    0.02  0.    0.    0.    0.1   0.    0.    0.    0.    0.    0.    0.
  0.    0.    0.02  0.    0.    0.    0.    0.    0.02  0.    0.    0.02
  0.    0.06  0.    0.    0.    0.    0.    0.    0.06  0.    0.    0.02
  0.    0.02  0.04  0.04  0.1   0.    0.    0.02  0.02  0.    0.    0.
  0.02  0.    0.    0.    0.    0.06  0.    0.    0.    0.    0.02  0.
  0.02  0.    0.02  0.    0.    0.    0.02  0.02  0.02  0.    0.02  0.
  0.02]
2017-08-04 06:00:00 	refes: (2795, 86) 	subjects: (60, 86) 	auc: 0.552575817772
30
auc_score =  0.550787975103 	feature importances: [ 0.    0.    0.    0.    0.    0.02  0.    0.04  0.02  0.    0.    0.02
  0.    0.02  0.    0.    0.    0.04  0.02  0.    0.    0.    0.    0.    0.
  0.    0.    0.02  0.    0.02  0.    0.    0.    0.02  0.04  0.    0.02
  0.    0.08  0.    0.    0.02  0.    0.    0.    0.02  0.    0.    0.    0.
  0.02  0.02  0.04  0.02  0.    0.    0.02  0.06  0.    0.    0.    0.02
  0.    0.06  0.    0.    0.08  0.    0.    0.04  0.    0.    0.    0.02
  0.    0.    0.    0.    0.02  0.02  0.08  0.02  0.02  0.02  0.    0.  ]
2017-08-04 07:00:00 	refes: (2795, 86) 	subjects: (60, 86) 	auc: 0.550787975103
31
auc_score =  0.525393987551 	feature importances: [ 0.    0.    0.    0.    0.    0.    0.    0.04  0.    0.04  0.    0.02
  0.    0.02  0.    0.    0.    0.02  0.02  0.    0.    0.    0.    0.    0.
  0.    0.    0.02  0.    0.    0.    0.    0.02  0.02  0.02  0.    0.02
  0.    0.06  0.    0.04  0.    0.    0.    0.    0.02  0.    0.    0.02
  0.    0.12  0.02  0.02  0.    0.    0.    0.04  0.06  0.    0.    0.    0.
  0.    0.04  0.    0.    0.16  0.    0.    0.    0.    0.    0.    0.02
  0.    0.02  0.    0.    0.02  0.02  0.02  0.02  0.    0.02  0.    0.  ]
2017-08-04 08:00:00 	refes: (2795, 86) 	subjects: (60, 86) 	auc: 0.525393987551
32
auc_score =  0.553767712886 	feature importances: [ 0.    0.    0.    0.    0.    0.02  0.    0.08  0.02  0.02  0.    0.02
  0.    0.02  0.    0.    0.    0.06  0.    0.    0.    0.    0.    0.    0.
  0.    0.    0.    0.    0.    0.    0.    0.    0.02  0.02  0.    0.02
  0.    0.08  0.    0.    0.    0.    0.02  0.    0.    0.    0.    0.02
  0.    0.14  0.02  0.02  0.02  0.    0.    0.06  0.02  0.    0.    0.
  0.02  0.    0.02  0.    0.02  0.08  0.    0.    0.02  0.    0.    0.
  0.02  0.    0.    0.    0.    0.02  0.02  0.04  0.02  0.    0.02  0.    0.  ]
2017-08-04 09:00:00 	refes: (2795, 86) 	subjects: (60, 86) 	auc: 0.553767712886
33
auc_score =  0.550787975103 	feature importances: [ 0.    0.    0.    0.    0.    0.02  0.    0.06  0.02  0.02  0.    0.02
  0.02  0.02  0.    0.    0.    0.04  0.    0.    0.    0.    0.    0.    0.
  0.    0.    0.02  0.    0.    0.    0.    0.    0.02  0.    0.    0.02
  0.    0.08  0.02  0.    0.    0.    0.02  0.    0.02  0.    0.    0.02
  0.    0.08  0.04  0.04  0.02  0.    0.    0.02  0.04  0.    0.    0.    0.
  0.    0.02  0.    0.02  0.12  0.    0.04  0.    0.    0.    0.    0.02
  0.    0.02  0.    0.    0.    0.    0.02  0.02  0.02  0.02  0.    0.  ]
2017-08-04 10:00:00 	refes: (2795, 86) 	subjects: (60, 86) 	auc: 0.550787975103
34
auc_score =  0.497020262217 	feature importances: [ 0.    0.    0.    0.    0.    0.02  0.    0.06  0.02  0.02  0.    0.02
  0.    0.02  0.    0.    0.    0.02  0.02  0.    0.    0.    0.    0.    0.
  0.    0.    0.02  0.    0.    0.    0.    0.02  0.02  0.    0.    0.02
  0.    0.02  0.    0.    0.    0.    0.02  0.    0.02  0.    0.    0.02
  0.    0.14  0.04  0.06  0.04  0.    0.    0.1   0.04  0.    0.    0.
  0.02  0.    0.    0.    0.    0.08  0.    0.    0.02  0.    0.    0.
  0.02  0.    0.    0.    0.    0.    0.    0.02  0.02  0.02  0.02  0.    0.  ]
2017-08-04 11:00:00 	refes: (2795, 86) 	subjects: (60, 86) 	auc: 0.497020262217
35
auc_score =  0.582737385777 	feature importances: [ 0.    0.    0.    0.    0.    0.02  0.    0.02  0.02  0.    0.    0.02
  0.    0.02  0.    0.    0.    0.06  0.06  0.    0.    0.    0.    0.    0.
  0.    0.    0.02  0.    0.    0.    0.    0.    0.02  0.02  0.    0.02
  0.04  0.06  0.    0.    0.    0.    0.02  0.    0.    0.    0.    0.    0.
  0.14  0.02  0.08  0.02  0.    0.    0.06  0.02  0.    0.    0.    0.02
  0.    0.    0.    0.    0.06  0.    0.    0.    0.    0.    0.    0.02
  0.    0.    0.    0.    0.06  0.02  0.02  0.02  0.    0.02  0.    0.  ]
2017-08-04 12:00:00 	refes: (2795, 86) 	subjects: (60, 86) 	auc: 0.582737385777
36
auc_score =  0.635909151106 	feature importances: [ 0.    0.    0.02  0.    0.    0.02  0.    0.02  0.    0.02  0.02  0.02
  0.    0.02  0.    0.    0.02  0.    0.    0.    0.    0.    0.    0.    0.
  0.    0.    0.06  0.    0.    0.    0.    0.    0.02  0.02  0.    0.02
  0.    0.06  0.    0.    0.    0.    0.02  0.    0.02  0.    0.    0.02
  0.    0.04  0.02  0.04  0.06  0.    0.    0.06  0.06  0.    0.    0.
  0.02  0.    0.    0.    0.02  0.1   0.    0.    0.04  0.    0.    0.
  0.02  0.    0.    0.02  0.    0.02  0.04  0.02  0.    0.    0.02  0.    0.  ]
2017-08-04 13:00:00 	refes: (2795, 86) 	subjects: (60, 86) 	auc: 0.635909151106
37
auc_score =  0.775393987551 	feature importances: [ 0.02  0.    0.    0.    0.    0.02  0.    0.02  0.    0.02  0.02  0.02
  0.    0.    0.    0.    0.04  0.02  0.04  0.    0.    0.    0.    0.    0.
  0.    0.    0.04  0.    0.    0.    0.    0.    0.02  0.04  0.    0.02
  0.    0.04  0.    0.    0.    0.02  0.    0.02  0.02  0.    0.    0.    0.
  0.1   0.    0.08  0.02  0.    0.    0.02  0.12  0.    0.    0.    0.02
  0.    0.    0.    0.    0.08  0.    0.    0.    0.    0.    0.    0.02
  0.    0.    0.    0.    0.    0.04  0.02  0.02  0.    0.02  0.    0.  ]
2017-08-04 14:00:00 	refes: (2795, 86) 	subjects: (60, 86) 	auc: 0.775393987551
38
auc_score =  0.885909151106 	feature importances: [ 0.    0.    0.    0.    0.    0.02  0.    0.1   0.    0.    0.02  0.    0.
  0.    0.    0.    0.02  0.04  0.    0.    0.    0.    0.    0.    0.    0.
  0.    0.08  0.    0.    0.    0.    0.    0.    0.    0.    0.    0.
  0.02  0.    0.    0.    0.22  0.02  0.    0.    0.    0.    0.    0.
  0.16  0.    0.12  0.    0.    0.    0.    0.02  0.    0.    0.    0.    0.
  0.    0.    0.    0.06  0.    0.    0.    0.    0.    0.    0.02  0.    0.
  0.    0.    0.    0.02  0.    0.02  0.    0.04  0.    0.  ]
2017-08-04 15:00:00 	refes: (2795, 86) 	subjects: (60, 86) 	auc: 0.885909151106
39
auc_score =  0.553171765329 	feature importances: [ 0.    0.    0.    0.    0.    0.06  0.    0.04  0.    0.02  0.    0.02
  0.02  0.    0.    0.    0.02  0.02  0.02  0.    0.    0.    0.    0.    0.
  0.    0.    0.06  0.02  0.    0.    0.    0.    0.02  0.    0.    0.
  0.02  0.02  0.    0.    0.    0.06  0.    0.    0.    0.    0.    0.    0.
  0.06  0.02  0.14  0.02  0.    0.    0.    0.08  0.    0.    0.    0.    0.
  0.    0.    0.    0.14  0.    0.    0.    0.    0.    0.    0.02  0.    0.
  0.    0.    0.    0.02  0.    0.02  0.    0.06  0.    0.  ]
2017-08-04 16:00:00 	refes: (2795, 86) 	subjects: (60, 86) 	auc: 0.553171765329
40
auc_score =  0.552575817772 	feature importances: [ 0.    0.    0.    0.    0.    0.02  0.    0.04  0.02  0.02  0.02  0.02
  0.    0.02  0.    0.    0.    0.04  0.    0.    0.    0.    0.    0.    0.
  0.    0.    0.04  0.    0.    0.    0.    0.    0.02  0.02  0.    0.02
  0.    0.02  0.    0.04  0.    0.2   0.02  0.    0.    0.    0.    0.    0.
  0.06  0.02  0.1   0.02  0.    0.    0.02  0.    0.    0.    0.    0.    0.
  0.    0.02  0.    0.1   0.    0.    0.02  0.    0.    0.    0.    0.    0.
  0.    0.    0.    0.02  0.02  0.    0.    0.02  0.    0.  ]
2017-08-04 17:00:00 	refes: (2795, 86) 	subjects: (60, 86) 	auc: 0.552575817772
41
auc_score =  0.663686928884 	feature importances: [ 0.    0.    0.    0.    0.    0.02  0.    0.02  0.    0.02  0.    0.02
  0.    0.02  0.    0.    0.    0.04  0.02  0.    0.    0.    0.    0.    0.
  0.    0.04  0.02  0.    0.    0.    0.    0.    0.02  0.    0.02  0.02
  0.    0.02  0.    0.04  0.    0.16  0.    0.    0.    0.    0.    0.    0.
  0.08  0.    0.04  0.    0.    0.    0.02  0.1   0.    0.    0.    0.02
  0.    0.    0.02  0.    0.08  0.    0.    0.02  0.02  0.    0.    0.    0.
  0.    0.    0.    0.02  0.02  0.02  0.    0.04  0.    0.    0.  ]
2017-08-04 18:00:00 	refes: (2795, 86) 	subjects: (60, 86) 	auc: 0.663686928884
42
auc_score =  0.499404052443 	feature importances: [ 0.    0.    0.    0.    0.    0.04  0.    0.04  0.02  0.02  0.    0.02
  0.    0.02  0.    0.    0.02  0.02  0.    0.    0.    0.    0.    0.    0.
  0.    0.    0.02  0.    0.    0.    0.    0.    0.02  0.02  0.    0.    0.
  0.02  0.    0.02  0.    0.08  0.02  0.    0.02  0.    0.    0.02  0.
  0.12  0.04  0.04  0.04  0.    0.    0.02  0.02  0.02  0.    0.    0.    0.
  0.    0.    0.    0.1   0.    0.    0.02  0.    0.02  0.    0.    0.    0.
  0.    0.    0.02  0.02  0.02  0.    0.04  0.02  0.    0.  ]
2017-08-04 19:00:00 	refes: (2795, 86) 	subjects: (60, 86) 	auc: 0.499404052443
43
auc_score =  0.524202092438 	feature importances: [ 0.    0.    0.02  0.    0.    0.02  0.    0.02  0.    0.02  0.    0.02
  0.    0.02  0.    0.    0.    0.02  0.    0.    0.    0.    0.    0.    0.
  0.    0.    0.06  0.02  0.    0.    0.    0.    0.02  0.02  0.    0.02
  0.    0.04  0.    0.    0.    0.08  0.02  0.    0.02  0.    0.    0.02
  0.    0.08  0.04  0.02  0.02  0.    0.    0.02  0.04  0.    0.    0.
  0.02  0.    0.    0.    0.    0.04  0.    0.    0.02  0.    0.    0.
  0.04  0.    0.    0.    0.    0.    0.04  0.06  0.    0.04  0.02  0.04
  0.  ]
2017-08-04 20:00:00 	refes: (2795, 86) 	subjects: (60, 86) 	auc: 0.524202092438
44
auc_score =  0.552575817772 	feature importances: [ 0.    0.    0.02  0.    0.    0.02  0.    0.04  0.    0.    0.    0.02
  0.    0.02  0.    0.    0.    0.04  0.02  0.    0.    0.    0.    0.    0.
  0.    0.    0.02  0.    0.    0.    0.    0.02  0.02  0.02  0.    0.    0.
  0.02  0.    0.02  0.    0.06  0.    0.    0.02  0.    0.02  0.    0.
  0.08  0.    0.04  0.06  0.    0.    0.02  0.02  0.    0.    0.    0.02
  0.    0.    0.    0.    0.12  0.    0.    0.02  0.    0.    0.    0.02
  0.    0.04  0.    0.    0.02  0.02  0.02  0.04  0.    0.02  0.04  0.  ]
2017-08-04 21:00:00 	refes: (2795, 86) 	subjects: (60, 86) 	auc: 0.552575817772
45
auc_score =  0.580949543107 	feature importances: [ 0.    0.    0.    0.    0.    0.02  0.    0.06  0.04  0.    0.    0.02
  0.    0.02  0.    0.    0.02  0.04  0.04  0.    0.    0.    0.    0.    0.
  0.    0.    0.02  0.    0.    0.    0.    0.    0.    0.02  0.    0.    0.
  0.02  0.    0.02  0.    0.22  0.02  0.    0.    0.    0.    0.    0.
  0.08  0.02  0.08  0.    0.    0.    0.06  0.04  0.    0.    0.    0.    0.
  0.    0.    0.    0.02  0.02  0.    0.02  0.    0.    0.    0.04  0.    0.
  0.    0.    0.02  0.    0.    0.    0.02  0.    0.    0.  ]
2017-08-04 22:00:00 	refes: (2795, 86) 	subjects: (60, 86) 	auc: 0.580949543107
46
auc_score =  0.552575817772 	feature importances: [ 0.    0.    0.    0.    0.    0.06  0.    0.04  0.02  0.02  0.    0.02
  0.    0.02  0.    0.    0.    0.04  0.    0.    0.    0.    0.    0.    0.
  0.    0.    0.02  0.    0.    0.    0.    0.    0.02  0.02  0.    0.02
  0.    0.04  0.    0.    0.    0.1   0.02  0.    0.02  0.    0.    0.    0.
  0.04  0.02  0.06  0.02  0.    0.    0.02  0.02  0.    0.    0.    0.    0.
  0.02  0.    0.    0.06  0.02  0.    0.02  0.    0.    0.    0.02  0.
  0.02  0.04  0.    0.    0.04  0.02  0.02  0.02  0.02  0.02  0.  ]
2017-08-04 23:00:00 	refes: (2795, 86) 	subjects: (60, 86) 	auc: 0.552575817772
47
auc_score =  0.498808104887 	feature importances: [ 0.    0.    0.    0.    0.    0.02  0.    0.08  0.02  0.02  0.    0.02
  0.    0.02  0.    0.    0.    0.04  0.02  0.    0.    0.    0.    0.    0.
  0.    0.    0.02  0.    0.    0.    0.    0.    0.02  0.02  0.    0.    0.
  0.02  0.    0.    0.    0.02  0.02  0.    0.02  0.    0.    0.    0.
  0.02  0.04  0.04  0.02  0.    0.    0.02  0.06  0.    0.    0.02  0.    0.
  0.04  0.    0.    0.16  0.06  0.    0.02  0.    0.    0.    0.    0.    0.
  0.    0.    0.02  0.02  0.    0.02  0.    0.02  0.04  0.  ]
2017-08-05 00:00:00 	refes: (2795, 86) 	subjects: (41, 86) 	auc: 0.498808104887
48
auc_score =  0.523650419287 	feature importances: [ 0.    0.    0.    0.    0.    0.02  0.    0.02  0.02  0.02  0.    0.02
  0.    0.02  0.    0.    0.    0.14  0.04  0.    0.    0.    0.    0.    0.
  0.    0.    0.02  0.    0.    0.    0.02  0.    0.02  0.    0.    0.02
  0.    0.02  0.    0.02  0.    0.12  0.    0.    0.02  0.    0.    0.    0.
  0.08  0.02  0.04  0.    0.    0.    0.04  0.04  0.    0.    0.    0.02
  0.    0.    0.    0.    0.04  0.02  0.    0.02  0.    0.    0.02  0.    0.
  0.02  0.02  0.    0.    0.02  0.02  0.    0.    0.02  0.    0.  ]
2017-08-05 01:00:00 	refes: (2825, 86) 	subjects: (60, 86) 	auc: 0.523650419287
49
auc_score =  0.495872641509 	feature importances: [ 0.    0.    0.    0.    0.    0.02  0.    0.02  0.02  0.02  0.    0.02
  0.    0.02  0.    0.    0.    0.06  0.02  0.    0.    0.    0.    0.    0.
  0.    0.    0.02  0.    0.    0.    0.    0.    0.02  0.02  0.    0.02
  0.02  0.02  0.    0.    0.    0.12  0.02  0.    0.04  0.    0.    0.    0.
  0.1   0.08  0.02  0.02  0.    0.    0.02  0.02  0.    0.    0.02  0.02
  0.    0.    0.    0.    0.08  0.    0.    0.    0.    0.    0.    0.02
  0.    0.    0.    0.    0.02  0.    0.02  0.02  0.02  0.02  0.    0.  ]
2017-08-05 02:00:00 	refes: (2825, 86) 	subjects: (60, 86) 	auc: 0.495872641509
50
auc_score =  0.527188155136 	feature importances: [ 0.    0.    0.    0.    0.    0.02  0.    0.02  0.    0.02  0.    0.02
  0.    0.02  0.    0.02  0.    0.04  0.04  0.    0.    0.    0.    0.    0.
  0.    0.    0.02  0.    0.    0.    0.02  0.    0.02  0.    0.    0.    0.
  0.02  0.    0.02  0.    0.04  0.    0.    0.02  0.    0.    0.    0.    0.1
  0.04  0.04  0.04  0.    0.    0.02  0.06  0.    0.    0.    0.02  0.
  0.02  0.    0.    0.1   0.    0.    0.04  0.    0.    0.    0.02  0.
  0.02  0.    0.    0.04  0.    0.02  0.02  0.02  0.02  0.    0.  ]
2017-08-05 03:00:00 	refes: (2825, 86) 	subjects: (60, 86) 	auc: 0.527188155136
51
auc_score =  0.498820754717 	feature importances: [ 0.    0.    0.02  0.    0.    0.02  0.    0.02  0.02  0.02  0.    0.02
  0.    0.02  0.    0.02  0.    0.06  0.02  0.    0.    0.    0.    0.    0.
  0.    0.    0.02  0.    0.    0.    0.    0.    0.02  0.    0.    0.    0.
  0.02  0.    0.02  0.    0.02  0.02  0.    0.02  0.    0.    0.    0.
  0.18  0.04  0.04  0.02  0.    0.    0.04  0.02  0.    0.    0.    0.02
  0.    0.02  0.    0.    0.06  0.    0.    0.    0.    0.    0.    0.02
  0.    0.    0.    0.    0.04  0.02  0.02  0.04  0.02  0.02  0.    0.  ]
2017-08-05 04:00:00 	refes: (2825, 86) 	subjects: (60, 86) 	auc: 0.498820754717
52
auc_score =  0.523060796646 	feature importances: [ 0.    0.    0.    0.    0.    0.04  0.    0.04  0.    0.02  0.02  0.02
  0.    0.02  0.    0.    0.02  0.04  0.02  0.    0.    0.    0.    0.02
  0.    0.    0.    0.02  0.    0.    0.    0.02  0.    0.    0.02  0.    0.
  0.    0.02  0.    0.04  0.    0.06  0.02  0.    0.02  0.    0.    0.    0.
  0.08  0.06  0.02  0.02  0.    0.    0.    0.06  0.    0.    0.    0.02
  0.    0.02  0.    0.    0.04  0.    0.    0.02  0.    0.    0.    0.    0.
  0.02  0.    0.    0.    0.04  0.02  0.06  0.02  0.02  0.    0.  ]
2017-08-05 05:00:00 	refes: (2825, 86) 	subjects: (60, 86) 	auc: 0.523060796646
53
auc_score =  0.498231132075 	feature importances: [ 0.    0.    0.    0.    0.    0.02  0.    0.06  0.02  0.02  0.    0.02
  0.    0.02  0.    0.    0.    0.04  0.04  0.    0.    0.    0.02  0.    0.
  0.    0.    0.02  0.    0.    0.    0.02  0.02  0.02  0.04  0.    0.02
  0.    0.04  0.    0.02  0.    0.04  0.02  0.    0.    0.    0.    0.    0.
  0.1   0.02  0.02  0.02  0.    0.    0.02  0.02  0.    0.    0.    0.02
  0.    0.02  0.    0.    0.06  0.    0.    0.02  0.    0.    0.    0.02
  0.    0.04  0.    0.    0.02  0.    0.02  0.    0.02  0.02  0.02  0.  ]
2017-08-05 06:00:00 	refes: (2825, 86) 	subjects: (60, 86) 	auc: 0.498231132075
54
auc_score =  0.55319706499 	feature importances: [ 0.    0.    0.    0.    0.    0.02  0.    0.08  0.    0.    0.    0.02
  0.    0.02  0.    0.    0.    0.06  0.02  0.    0.    0.    0.    0.    0.
  0.    0.    0.02  0.02  0.    0.    0.    0.    0.    0.02  0.    0.02
  0.    0.04  0.    0.02  0.    0.04  0.02  0.    0.02  0.    0.    0.    0.
  0.08  0.02  0.02  0.04  0.    0.    0.02  0.06  0.    0.    0.    0.02
  0.    0.02  0.    0.    0.08  0.    0.    0.02  0.02  0.    0.    0.02
  0.    0.    0.    0.    0.    0.    0.04  0.06  0.02  0.02  0.    0.  ]
2017-08-05 07:00:00 	refes: (2825, 86) 	subjects: (60, 86) 	auc: 0.55319706499
55
auc_score =  0.522471174004 	feature importances: [ 0.    0.    0.    0.    0.    0.08  0.    0.04  0.    0.02  0.04  0.    0.
  0.    0.    0.    0.02  0.08  0.02  0.    0.    0.    0.    0.    0.    0.
  0.    0.02  0.    0.    0.    0.    0.    0.02  0.02  0.    0.    0.
  0.04  0.    0.    0.02  0.    0.04  0.    0.04  0.    0.    0.    0.    0.1
  0.02  0.04  0.02  0.    0.    0.04  0.04  0.    0.    0.    0.    0.
  0.02  0.    0.    0.08  0.    0.    0.02  0.    0.    0.    0.02  0.    0.
  0.    0.    0.    0.    0.04  0.02  0.02  0.02  0.    0.  ]
2017-08-05 08:00:00 	refes: (2825, 86) 	subjects: (60, 86) 	auc: 0.522471174004
56
auc_score =  0.5 	feature importances: [ 0.    0.    0.    0.    0.    0.02  0.    0.04  0.02  0.    0.    0.    0.
  0.02  0.    0.02  0.    0.06  0.02  0.    0.    0.    0.    0.    0.    0.
  0.    0.    0.    0.    0.    0.    0.    0.02  0.02  0.    0.02  0.
  0.02  0.    0.02  0.    0.02  0.    0.    0.    0.    0.    0.    0.
  0.12  0.04  0.02  0.06  0.    0.    0.02  0.04  0.    0.    0.    0.    0.
  0.02  0.    0.02  0.14  0.    0.    0.02  0.    0.    0.    0.02  0.    0.
  0.    0.    0.    0.02  0.04  0.02  0.02  0.06  0.    0.  ]
2017-08-05 09:00:00 	refes: (2825, 86) 	subjects: (60, 86) 	auc: 0.5
57
auc_score =  0.499410377358 	feature importances: [ 0.    0.    0.02  0.    0.    0.04  0.    0.02  0.    0.02  0.    0.    0.
  0.02  0.    0.    0.02  0.02  0.    0.    0.    0.    0.    0.    0.    0.
  0.    0.04  0.    0.    0.    0.    0.    0.    0.02  0.    0.    0.
  0.02  0.    0.02  0.    0.12  0.    0.    0.02  0.    0.    0.    0.
  0.22  0.02  0.04  0.02  0.    0.    0.02  0.04  0.    0.    0.    0.    0.
  0.    0.    0.    0.06  0.    0.    0.    0.    0.    0.    0.02  0.
  0.02  0.    0.    0.02  0.02  0.04  0.02  0.02  0.02  0.    0.  ]
2017-08-05 10:00:00 	refes: (2825, 86) 	subjects: (60, 86) 	auc: 0.499410377358
58
auc_score =  0.498231132075 	feature importances: [ 0.    0.    0.    0.    0.    0.04  0.    0.04  0.    0.02  0.02  0.    0.
  0.02  0.    0.    0.    0.04  0.02  0.    0.    0.    0.    0.    0.    0.
  0.    0.02  0.    0.    0.    0.    0.    0.02  0.02  0.    0.    0.02
  0.04  0.    0.    0.    0.04  0.02  0.    0.02  0.    0.    0.    0.    0.2
  0.06  0.02  0.04  0.    0.    0.02  0.    0.    0.    0.    0.02  0.
  0.02  0.    0.    0.08  0.    0.    0.    0.    0.    0.    0.02  0.
  0.02  0.02  0.    0.02  0.02  0.02  0.02  0.    0.    0.    0.  ]
2017-08-05 11:00:00 	refes: (2825, 86) 	subjects: (60, 86) 	auc: 0.498231132075
59
auc_score =  0.497641509434 	feature importances: [ 0.    0.    0.    0.    0.    0.02  0.    0.02  0.02  0.02  0.02  0.    0.
  0.02  0.    0.    0.04  0.06  0.    0.    0.    0.    0.    0.    0.    0.
  0.    0.02  0.    0.    0.    0.    0.04  0.02  0.    0.    0.02  0.
  0.02  0.    0.02  0.    0.04  0.02  0.    0.02  0.    0.02  0.    0.
  0.06  0.02  0.02  0.    0.    0.    0.1   0.04  0.    0.    0.    0.    0.
  0.02  0.    0.02  0.06  0.    0.    0.02  0.    0.    0.    0.    0.    0.
  0.    0.    0.02  0.02  0.04  0.02  0.02  0.04  0.02  0.  ]
2017-08-05 12:00:00 	refes: (2825, 86) 	subjects: (60, 86) 	auc: 0.497641509434
60
auc_score =  0.554965932914 	feature importances: [ 0.    0.    0.    0.    0.    0.02  0.02  0.02  0.    0.02  0.02  0.    0.
  0.02  0.    0.    0.    0.04  0.02  0.    0.    0.    0.    0.    0.    0.
  0.    0.04  0.    0.    0.    0.    0.02  0.    0.    0.    0.04  0.
  0.02  0.    0.02  0.    0.08  0.02  0.    0.02  0.    0.    0.    0.
  0.06  0.06  0.02  0.06  0.    0.    0.06  0.04  0.    0.    0.    0.    0.
  0.    0.    0.    0.06  0.    0.    0.    0.    0.    0.    0.    0.
  0.02  0.02  0.    0.04  0.06  0.02  0.02  0.    0.02  0.    0.  ]
2017-08-05 13:00:00 	refes: (2825, 86) 	subjects: (60, 86) 	auc: 0.554965932914
61
auc_score =  0.525419287212 	feature importances: [ 0.    0.    0.02  0.    0.    0.02  0.02  0.02  0.    0.02  0.02  0.    0.
  0.02  0.    0.    0.02  0.04  0.02  0.    0.    0.    0.    0.    0.    0.
  0.    0.02  0.    0.    0.    0.    0.02  0.04  0.02  0.    0.02  0.
  0.02  0.    0.02  0.    0.04  0.02  0.    0.    0.    0.    0.    0.
  0.12  0.    0.04  0.02  0.    0.    0.02  0.02  0.    0.    0.    0.02
  0.    0.06  0.    0.    0.1   0.    0.    0.    0.    0.    0.    0.    0.
  0.02  0.02  0.    0.02  0.02  0.02  0.02  0.02  0.02  0.    0.  ]
2017-08-05 14:00:00 	refes: (2825, 86) 	subjects: (60, 86) 	auc: 0.525419287212
62
auc_score =  0.553786687631 	feature importances: [ 0.    0.    0.    0.    0.    0.02  0.02  0.06  0.02  0.02  0.02  0.02
  0.    0.02  0.    0.    0.04  0.02  0.02  0.    0.    0.    0.    0.    0.
  0.    0.    0.02  0.    0.    0.    0.    0.    0.02  0.02  0.    0.02
  0.    0.02  0.    0.    0.02  0.06  0.    0.    0.02  0.    0.    0.    0.
  0.08  0.06  0.02  0.02  0.    0.    0.02  0.04  0.    0.    0.    0.02
  0.    0.    0.    0.02  0.12  0.02  0.    0.    0.    0.    0.    0.    0.
  0.    0.    0.    0.02  0.02  0.02  0.02  0.02  0.    0.    0.  ]
2017-08-05 15:00:00 	refes: (2825, 86) 	subjects: (60, 86) 	auc: 0.553786687631
63
auc_score =  0.523650419287 	feature importances: [ 0.    0.    0.    0.    0.    0.04  0.02  0.14  0.    0.02  0.02  0.02
  0.    0.02  0.    0.    0.    0.04  0.04  0.    0.    0.    0.    0.    0.
  0.    0.    0.02  0.02  0.    0.    0.    0.02  0.02  0.02  0.    0.
  0.02  0.02  0.    0.    0.    0.04  0.02  0.    0.    0.    0.    0.    0.
  0.12  0.02  0.02  0.02  0.    0.    0.    0.06  0.    0.    0.    0.    0.
  0.    0.    0.    0.12  0.    0.    0.02  0.    0.    0.    0.02  0.
  0.02  0.    0.    0.    0.    0.    0.    0.02  0.    0.    0.  ]
2017-08-05 16:00:00 	refes: (2825, 86) 	subjects: (60, 86) 	auc: 0.523650419287
64
auc_score =  0.526008909853 	feature importances: [ 0.    0.    0.    0.    0.    0.    0.    0.08  0.    0.02  0.    0.    0.
  0.02  0.    0.    0.02  0.02  0.04  0.    0.    0.    0.    0.    0.    0.
  0.    0.02  0.    0.    0.    0.    0.02  0.    0.02  0.    0.    0.
  0.02  0.    0.02  0.    0.06  0.02  0.    0.    0.    0.    0.    0.
  0.14  0.    0.04  0.    0.    0.    0.02  0.04  0.    0.    0.    0.02
  0.    0.02  0.    0.02  0.08  0.    0.    0.02  0.    0.    0.    0.04
  0.    0.02  0.    0.    0.02  0.02  0.04  0.04  0.02  0.02  0.    0.  ]
2017-08-05 17:00:00 	refes: (2825, 86) 	subjects: (60, 86) 	auc: 0.526008909853
65
auc_score =  0.526598532495 	feature importances: [ 0.    0.    0.    0.    0.    0.02  0.    0.08  0.    0.04  0.02  0.02
  0.    0.02  0.    0.    0.    0.04  0.02  0.    0.    0.    0.02  0.    0.
  0.    0.    0.02  0.    0.    0.    0.02  0.    0.02  0.    0.    0.04
  0.    0.02  0.    0.    0.    0.08  0.02  0.    0.    0.    0.    0.    0.
  0.04  0.08  0.02  0.06  0.    0.    0.02  0.02  0.    0.    0.    0.02
  0.    0.    0.    0.    0.1   0.    0.    0.02  0.    0.    0.    0.
  0.02  0.    0.    0.    0.02  0.02  0.02  0.02  0.    0.02  0.    0.  ]
2017-08-05 18:00:00 	refes: (2825, 86) 	subjects: (60, 86) 	auc: 0.526598532495
66
auc_score =  0.523650419287 	feature importances: [ 0.    0.    0.    0.    0.    0.02  0.02  0.06  0.    0.04  0.02  0.    0.
  0.    0.    0.    0.    0.02  0.    0.    0.    0.    0.    0.    0.    0.
  0.02  0.02  0.    0.02  0.    0.    0.    0.02  0.02  0.    0.02  0.02
  0.1   0.    0.    0.    0.1   0.02  0.    0.02  0.    0.    0.    0.
  0.04  0.02  0.04  0.04  0.    0.    0.12  0.06  0.    0.    0.    0.    0.
  0.    0.    0.    0.04  0.    0.    0.02  0.    0.    0.    0.    0.
  0.02  0.    0.    0.    0.    0.02  0.02  0.    0.    0.    0.  ]
2017-08-05 19:00:00 	refes: (2825, 86) 	subjects: (60, 86) 	auc: 0.523650419287
67
auc_score =  0.525419287212 	feature importances: [ 0.    0.    0.    0.    0.    0.04  0.    0.06  0.02  0.    0.    0.    0.
  0.    0.    0.    0.    0.04  0.02  0.    0.    0.    0.    0.    0.    0.
  0.    0.    0.02  0.02  0.    0.    0.    0.02  0.02  0.    0.02  0.02
  0.06  0.    0.    0.    0.04  0.    0.    0.02  0.    0.    0.    0.
  0.08  0.06  0.04  0.08  0.    0.    0.02  0.02  0.    0.    0.    0.02
  0.    0.    0.02  0.    0.12  0.    0.    0.    0.    0.    0.    0.02
  0.    0.    0.    0.    0.    0.02  0.02  0.02  0.02  0.02  0.    0.  ]
2017-08-05 20:00:00 	refes: (2825, 86) 	subjects: (60, 86) 	auc: 0.525419287212
68
auc_score =  0.551428197065 	feature importances: [ 0.    0.    0.    0.    0.    0.02  0.08  0.06  0.    0.02  0.    0.
  0.02  0.    0.    0.    0.    0.02  0.02  0.    0.    0.    0.    0.    0.
  0.    0.    0.08  0.    0.    0.    0.    0.    0.02  0.02  0.    0.02
  0.02  0.02  0.    0.    0.    0.06  0.    0.    0.02  0.    0.    0.    0.
  0.06  0.02  0.02  0.06  0.    0.    0.    0.1   0.    0.    0.    0.02
  0.    0.    0.    0.    0.1   0.    0.    0.02  0.    0.    0.    0.02
  0.    0.    0.02  0.    0.    0.02  0.02  0.    0.02  0.    0.    0.  ]
2017-08-05 21:00:00 	refes: (2825, 86) 	subjects: (60, 86) 	auc: 0.551428197065
69
auc_score =  0.524240041929 	feature importances: [ 0.    0.    0.    0.    0.    0.02  0.02  0.04  0.    0.04  0.    0.    0.
  0.    0.    0.    0.    0.06  0.    0.    0.    0.    0.    0.    0.    0.
  0.02  0.02  0.02  0.    0.    0.    0.    0.02  0.02  0.    0.02  0.
  0.02  0.    0.02  0.    0.14  0.    0.    0.    0.    0.    0.    0.
  0.16  0.    0.02  0.06  0.    0.    0.02  0.04  0.    0.    0.    0.02
  0.    0.02  0.    0.    0.08  0.    0.    0.    0.    0.    0.    0.02
  0.    0.    0.    0.    0.    0.02  0.02  0.    0.02  0.02  0.    0.  ]
2017-08-05 22:00:00 	refes: (2825, 86) 	subjects: (60, 86) 	auc: 0.524240041929
70
auc_score =  0.525419287212 	feature importances: [ 0.    0.    0.    0.    0.    0.04  0.02  0.18  0.    0.04  0.02  0.    0.
  0.    0.    0.    0.02  0.04  0.02  0.    0.    0.    0.    0.    0.    0.
  0.    0.02  0.    0.    0.    0.    0.    0.    0.    0.    0.    0.
  0.02  0.    0.    0.    0.06  0.02  0.    0.02  0.    0.    0.    0.
  0.16  0.06  0.04  0.02  0.    0.    0.02  0.    0.    0.    0.    0.    0.
  0.04  0.    0.    0.02  0.    0.    0.02  0.    0.    0.    0.02  0.    0.
  0.    0.    0.    0.    0.04  0.    0.02  0.    0.02  0.  ]
2017-08-05 23:00:00 	refes: (2825, 86) 	subjects: (60, 86) 	auc: 0.525419287212
71
auc_score =  0.498231132075 	feature importances: [ 0.    0.    0.02  0.    0.    0.02  0.    0.04  0.02  0.14  0.02  0.    0.
  0.02  0.    0.    0.    0.02  0.02  0.    0.    0.    0.    0.    0.    0.
  0.    0.02  0.    0.    0.    0.    0.    0.02  0.02  0.    0.02  0.
  0.02  0.    0.02  0.    0.02  0.02  0.    0.02  0.    0.    0.    0.
  0.08  0.16  0.02  0.02  0.    0.    0.02  0.02  0.    0.    0.    0.    0.
  0.02  0.    0.    0.04  0.    0.    0.02  0.    0.    0.    0.02  0.    0.
  0.02  0.    0.    0.02  0.02  0.02  0.    0.    0.    0.  ]
2017-08-06 00:00:00 	refes: (2825, 86) 	subjects: (22, 86) 	auc: 0.498231132075
72
auc_score =  0.497638724911 	feature importances: [ 0.    0.    0.    0.    0.    0.04  0.02  0.04  0.02  0.    0.    0.    0.
  0.02  0.    0.    0.    0.    0.02  0.    0.    0.    0.    0.    0.    0.
  0.    0.02  0.    0.    0.    0.    0.    0.02  0.    0.    0.02  0.02
  0.02  0.    0.02  0.    0.02  0.    0.    0.04  0.    0.    0.    0.
  0.06  0.04  0.04  0.02  0.    0.    0.14  0.02  0.    0.    0.    0.02
  0.    0.    0.    0.    0.1   0.    0.    0.    0.    0.    0.    0.    0.
  0.02  0.02  0.    0.02  0.04  0.02  0.04  0.02  0.02  0.02  0.  ]
2017-08-06 01:00:00 	refes: (2823, 86) 	subjects: (60, 86) 	auc: 0.497638724911
73
auc_score =  0.580381739473 	feature importances: [ 0.    0.    0.    0.    0.    0.02  0.    0.02  0.02  0.02  0.02  0.    0.
  0.    0.    0.02  0.02  0.08  0.02  0.    0.    0.    0.    0.    0.    0.
  0.    0.02  0.    0.    0.    0.    0.02  0.02  0.02  0.    0.02  0.
  0.02  0.    0.04  0.06  0.08  0.02  0.02  0.02  0.    0.    0.    0.
  0.08  0.02  0.04  0.02  0.    0.    0.08  0.    0.    0.    0.    0.    0.
  0.02  0.    0.    0.02  0.    0.    0.    0.    0.    0.    0.02  0.    0.
  0.    0.    0.    0.02  0.02  0.04  0.02  0.    0.    0.  ]
2017-08-06 02:00:00 	refes: (2823, 86) 	subjects: (60, 86) 	auc: 0.580381739473
74
auc_score =  0.497638724911 	feature importances: [ 0.    0.    0.    0.    0.    0.02  0.02  0.08  0.    0.08  0.02  0.    0.
  0.    0.    0.    0.    0.06  0.04  0.    0.    0.    0.    0.    0.    0.
  0.02  0.02  0.    0.    0.    0.    0.    0.04  0.04  0.    0.    0.
  0.02  0.    0.02  0.    0.1   0.    0.    0.02  0.    0.    0.    0.
  0.02  0.04  0.02  0.04  0.    0.    0.04  0.06  0.    0.    0.    0.    0.
  0.    0.    0.    0.06  0.    0.    0.02  0.    0.    0.    0.02  0.
  0.02  0.    0.    0.    0.02  0.02  0.02  0.    0.    0.    0.  ]
2017-08-06 03:00:00 	refes: (2823, 86) 	subjects: (60, 86) 	auc: 0.497638724911
75
auc_score =  0.549062049062 	feature importances: [ 0.    0.    0.    0.    0.    0.06  0.02  0.18  0.02  0.02  0.    0.
  0.02  0.    0.    0.    0.    0.02  0.02  0.    0.    0.    0.    0.    0.
  0.    0.    0.02  0.    0.    0.    0.    0.    0.02  0.    0.    0.02
  0.02  0.02  0.    0.    0.    0.04  0.04  0.    0.02  0.    0.02  0.
  0.02  0.02  0.    0.04  0.04  0.    0.    0.12  0.04  0.    0.    0.
  0.02  0.    0.02  0.    0.    0.02  0.    0.    0.02  0.    0.    0.
  0.02  0.    0.    0.    0.    0.    0.02  0.02  0.    0.    0.    0.    0.  ]
2017-08-06 04:00:00 	refes: (2823, 86) 	subjects: (60, 86) 	auc: 0.549062049062
76
auc_score =  0.526597140234 	feature importances: [ 0.    0.02  0.02  0.02  0.    0.02  0.1   0.08  0.02  0.02  0.    0.    0.
  0.    0.    0.    0.02  0.04  0.02  0.    0.    0.    0.    0.    0.    0.
  0.    0.02  0.    0.    0.    0.    0.    0.    0.    0.    0.    0.
  0.02  0.    0.    0.    0.04  0.02  0.    0.    0.    0.    0.    0.
  0.08  0.02  0.04  0.04  0.    0.    0.04  0.02  0.02  0.    0.    0.02
  0.    0.    0.    0.    0.14  0.    0.    0.02  0.    0.    0.    0.    0.
  0.    0.02  0.    0.    0.02  0.02  0.02  0.    0.    0.    0.  ]
2017-08-06 05:00:00 	refes: (2823, 86) 	subjects: (60, 86) 	auc: 0.526597140234
77
auc_score =  0.524235865145 	feature importances: [ 0.    0.    0.02  0.    0.    0.    0.02  0.04  0.02  0.02  0.    0.    0.
  0.    0.    0.    0.    0.04  0.04  0.    0.    0.    0.    0.    0.    0.
  0.    0.02  0.    0.    0.    0.    0.    0.02  0.04  0.    0.02  0.
  0.02  0.    0.04  0.    0.04  0.    0.    0.02  0.    0.    0.    0.
  0.14  0.02  0.08  0.02  0.    0.    0.04  0.02  0.    0.    0.    0.02
  0.    0.    0.    0.    0.08  0.    0.    0.04  0.    0.    0.    0.02
  0.    0.    0.    0.    0.02  0.02  0.02  0.02  0.02  0.    0.    0.  ]
2017-08-06 06:00:00 	refes: (2823, 86) 	subjects: (60, 86) 	auc: 0.524235865145
78
auc_score =  0.498819362456 	feature importances: [ 0.    0.    0.    0.    0.    0.02  0.    0.04  0.    0.02  0.02  0.    0.
  0.    0.    0.    0.    0.02  0.04  0.    0.    0.02  0.    0.    0.    0.
  0.    0.02  0.    0.    0.    0.    0.04  0.02  0.04  0.    0.02  0.
  0.02  0.    0.02  0.    0.04  0.    0.    0.02  0.    0.    0.    0.
  0.14  0.08  0.06  0.04  0.    0.    0.02  0.04  0.    0.    0.    0.02
  0.    0.02  0.    0.    0.04  0.    0.    0.02  0.    0.    0.    0.02
  0.    0.    0.    0.    0.    0.02  0.    0.02  0.02  0.02  0.    0.  ]
2017-08-06 07:00:00 	refes: (2823, 86) 	subjects: (60, 86) 	auc: 0.498819362456
79
auc_score =  0.497638724911 	feature importances: [ 0.    0.    0.    0.    0.    0.04  0.02  0.1   0.    0.    0.02  0.    0.
  0.    0.    0.    0.    0.04  0.02  0.    0.    0.    0.    0.    0.    0.
  0.    0.08  0.    0.    0.    0.    0.    0.02  0.    0.    0.04  0.
  0.04  0.    0.04  0.    0.02  0.    0.    0.02  0.    0.    0.    0.
  0.06  0.04  0.06  0.02  0.    0.    0.02  0.04  0.    0.    0.    0.    0.
  0.    0.    0.    0.04  0.    0.    0.02  0.    0.    0.    0.02  0.
  0.02  0.    0.    0.02  0.02  0.06  0.02  0.02  0.02  0.    0.  ]
2017-08-06 08:00:00 	refes: (2823, 86) 	subjects: (60, 86) 	auc: 0.497638724911
80
auc_score =  0.498819362456 	feature importances: [ 0.    0.    0.02  0.    0.    0.06  0.02  0.02  0.    0.02  0.    0.02
  0.    0.    0.    0.    0.02  0.04  0.02  0.    0.    0.    0.    0.    0.
  0.    0.    0.02  0.    0.    0.    0.    0.    0.02  0.02  0.    0.02
  0.    0.04  0.    0.04  0.02  0.02  0.02  0.    0.02  0.    0.02  0.    0.
  0.06  0.    0.06  0.    0.    0.    0.06  0.02  0.    0.    0.    0.02
  0.    0.    0.    0.    0.1   0.    0.    0.02  0.    0.    0.    0.02
  0.    0.    0.    0.    0.    0.02  0.02  0.06  0.02  0.02  0.    0.  ]
2017-08-06 09:00:00 	refes: (2823, 86) 	subjects: (60, 86) 	auc: 0.498819362456
81
auc_score =  0.552603961695 	feature importances: [ 0.    0.    0.    0.    0.    0.06  0.    0.06  0.02  0.02  0.    0.    0.
  0.    0.    0.    0.02  0.04  0.    0.    0.    0.    0.    0.    0.    0.
  0.    0.02  0.    0.    0.    0.    0.    0.02  0.04  0.    0.02  0.
  0.04  0.02  0.    0.    0.06  0.    0.    0.02  0.    0.    0.    0.
  0.14  0.02  0.08  0.02  0.    0.    0.06  0.06  0.    0.    0.    0.    0.
  0.    0.    0.    0.    0.    0.    0.02  0.    0.    0.    0.02  0.    0.
  0.02  0.    0.    0.02  0.    0.02  0.02  0.    0.04  0.  ]
2017-08-06 10:00:00 	refes: (2823, 86) 	subjects: (60, 86) 	auc: 0.552603961695
82
auc_score =  0.526006821461 	feature importances: [ 0.    0.    0.    0.    0.    0.02  0.    0.04  0.    0.02  0.    0.    0.
  0.    0.    0.    0.02  0.    0.04  0.    0.    0.    0.    0.    0.    0.
  0.    0.02  0.    0.    0.    0.    0.    0.02  0.06  0.    0.02  0.
  0.02  0.    0.02  0.    0.1   0.    0.    0.02  0.    0.    0.    0.    0.1
  0.    0.04  0.08  0.    0.    0.04  0.06  0.    0.    0.02  0.02  0.
  0.06  0.    0.    0.    0.    0.    0.    0.    0.    0.    0.02  0.    0.
  0.02  0.    0.02  0.02  0.02  0.02  0.02  0.02  0.    0.  ]
2017-08-06 11:00:00 	refes: (2823, 86) 	subjects: (60, 86) 	auc: 0.526006821461
83
auc_score =  0.497638724911 	feature importances: [ 0.    0.    0.    0.    0.    0.06  0.02  0.02  0.02  0.    0.02  0.    0.
  0.    0.    0.    0.    0.06  0.02  0.    0.    0.    0.    0.    0.    0.
  0.    0.02  0.    0.    0.    0.    0.    0.02  0.04  0.    0.    0.02
  0.06  0.    0.04  0.    0.02  0.02  0.    0.02  0.    0.    0.    0.    0.1
  0.02  0.06  0.04  0.    0.    0.02  0.    0.    0.    0.    0.02  0.    0.
  0.    0.    0.08  0.    0.    0.02  0.    0.    0.    0.    0.    0.
  0.02  0.    0.02  0.02  0.02  0.04  0.02  0.    0.    0.02]
2017-08-06 12:00:00 	refes: (2823, 86) 	subjects: (60, 86) 	auc: 0.497638724911
84
auc_score =  0.525416502689 	feature importances: [ 0.    0.    0.    0.    0.    0.04  0.    0.04  0.02  0.02  0.02  0.02
  0.02  0.    0.    0.    0.    0.04  0.    0.    0.    0.    0.    0.    0.
  0.    0.    0.02  0.    0.    0.    0.    0.02  0.    0.02  0.    0.02
  0.    0.02  0.    0.    0.    0.04  0.02  0.    0.02  0.    0.    0.    0.
  0.12  0.02  0.1   0.    0.    0.    0.02  0.04  0.    0.    0.    0.02
  0.    0.    0.    0.    0.1   0.    0.    0.    0.02  0.    0.    0.02
  0.    0.02  0.    0.    0.    0.02  0.02  0.02  0.02  0.    0.    0.04]
2017-08-06 13:00:00 	refes: (2823, 86) 	subjects: (60, 86) 	auc: 0.525416502689
85
auc_score =  0.526597140234 	feature importances: [ 0.    0.    0.    0.    0.    0.02  0.02  0.06  0.    0.02  0.    0.    0.
  0.    0.    0.    0.    0.06  0.    0.    0.    0.    0.    0.    0.    0.
  0.    0.02  0.    0.    0.    0.    0.    0.    0.    0.    0.02  0.
  0.02  0.    0.02  0.02  0.04  0.    0.    0.02  0.    0.    0.    0.    0.2
  0.02  0.08  0.02  0.    0.    0.02  0.04  0.    0.    0.    0.02  0.    0.
  0.    0.    0.16  0.    0.    0.    0.    0.    0.    0.02  0.    0.    0.
  0.    0.    0.02  0.02  0.    0.02  0.02  0.    0.  ]
2017-08-06 14:00:00 	refes: (2823, 86) 	subjects: (60, 86) 	auc: 0.526597140234
86
auc_score =  0.578610783156 	feature importances: [ 0.    0.    0.    0.    0.    0.06  0.    0.14  0.    0.02  0.    0.    0.
  0.    0.    0.    0.    0.02  0.    0.    0.    0.02  0.    0.    0.    0.
  0.    0.02  0.    0.    0.    0.    0.    0.02  0.    0.    0.02  0.
  0.06  0.    0.    0.    0.04  0.    0.    0.    0.    0.    0.    0.
  0.04  0.06  0.12  0.02  0.    0.    0.    0.02  0.    0.    0.    0.02
  0.    0.    0.    0.    0.14  0.    0.    0.    0.    0.    0.    0.02
  0.    0.    0.    0.    0.02  0.    0.06  0.02  0.    0.02  0.02  0.  ]
2017-08-06 15:00:00 	refes: (2823, 86) 	subjects: (60, 86) 	auc: 0.578610783156
87
auc_score =  0.579791420701 	feature importances: [ 0.    0.    0.02  0.    0.    0.04  0.    0.    0.04  0.02  0.    0.    0.
  0.    0.    0.    0.02  0.06  0.02  0.    0.    0.    0.    0.    0.    0.
  0.    0.02  0.    0.    0.    0.    0.    0.    0.02  0.    0.    0.
  0.02  0.    0.    0.    0.02  0.    0.    0.02  0.    0.    0.    0.
  0.22  0.02  0.08  0.02  0.    0.    0.06  0.02  0.    0.    0.    0.02
  0.    0.    0.    0.    0.08  0.    0.    0.02  0.    0.    0.    0.02
  0.    0.    0.    0.    0.04  0.02  0.    0.06  0.    0.    0.    0.  ]
2017-08-06 16:00:00 	refes: (2823, 86) 	subjects: (60, 86) 	auc: 0.579791420701
88
auc_score =  0.526006821461 	feature importances: [ 0.    0.    0.    0.    0.    0.    0.02  0.06  0.02  0.02  0.    0.
  0.04  0.    0.    0.04  0.02  0.04  0.02  0.    0.    0.    0.    0.    0.
  0.    0.    0.02  0.    0.    0.    0.    0.    0.02  0.02  0.    0.    0.
  0.02  0.    0.02  0.    0.    0.    0.    0.02  0.    0.    0.    0.
  0.12  0.02  0.06  0.1   0.    0.    0.04  0.02  0.    0.    0.    0.    0.
  0.    0.    0.    0.08  0.    0.    0.02  0.    0.    0.    0.    0.
  0.02  0.    0.    0.02  0.    0.06  0.02  0.02  0.    0.    0.  ]
2017-08-06 17:00:00 	refes: (2823, 86) 	subjects: (60, 86) 	auc: 0.526006821461
89
auc_score =  0.495867768595 	feature importances: [ 0.    0.    0.    0.    0.    0.06  0.02  0.    0.02  0.04  0.02  0.
  0.02  0.    0.02  0.    0.02  0.02  0.02  0.    0.    0.    0.    0.    0.
  0.    0.    0.02  0.02  0.    0.    0.    0.    0.02  0.02  0.    0.02
  0.    0.04  0.02  0.    0.    0.04  0.02  0.    0.02  0.    0.    0.    0.
  0.16  0.02  0.08  0.04  0.    0.    0.02  0.    0.    0.    0.    0.02
  0.    0.    0.    0.    0.04  0.    0.    0.02  0.    0.    0.    0.02
  0.    0.    0.    0.    0.    0.02  0.    0.02  0.02  0.02  0.    0.  ]
2017-08-06 18:00:00 	refes: (2823, 86) 	subjects: (60, 86) 	auc: 0.495867768595
90
auc_score =  0.527187459006 	feature importances: [ 0.    0.    0.    0.    0.    0.04  0.    0.04  0.02  0.    0.02  0.    0.
  0.    0.02  0.02  0.02  0.    0.04  0.    0.    0.    0.    0.    0.    0.
  0.    0.02  0.    0.    0.02  0.    0.    0.    0.08  0.    0.02  0.
  0.02  0.    0.02  0.    0.1   0.02  0.    0.02  0.    0.    0.    0.    0.1
  0.02  0.06  0.04  0.04  0.    0.02  0.02  0.    0.    0.    0.    0.    0.
  0.    0.    0.04  0.    0.    0.    0.02  0.    0.    0.    0.    0.
  0.02  0.    0.    0.    0.04  0.02  0.02  0.    0.    0.  ]
2017-08-06 19:00:00 	refes: (2823, 86) 	subjects: (60, 86) 	auc: 0.527187459006
91
auc_score =  0.526597140234 	feature importances: [ 0.    0.    0.    0.    0.    0.02  0.    0.04  0.02  0.02  0.    0.    0.
  0.    0.    0.    0.    0.06  0.04  0.    0.    0.    0.    0.    0.    0.
  0.    0.    0.    0.    0.    0.    0.    0.02  0.    0.    0.02  0.
  0.02  0.    0.02  0.    0.1   0.04  0.    0.02  0.    0.    0.    0.
  0.12  0.04  0.06  0.02  0.    0.    0.08  0.04  0.    0.    0.    0.    0.
  0.02  0.    0.    0.06  0.    0.    0.02  0.    0.    0.    0.    0.    0.
  0.    0.    0.02  0.02  0.    0.02  0.02  0.02  0.    0.  ]
2017-08-06 20:00:00 	refes: (2823, 86) 	subjects: (60, 86) 	auc: 0.526597140234
92
auc_score =  0.497048406139 	feature importances: [ 0.    0.    0.02  0.    0.    0.02  0.    0.02  0.    0.02  0.    0.    0.
  0.    0.    0.    0.    0.04  0.02  0.    0.    0.    0.    0.    0.    0.
  0.    0.02  0.    0.    0.    0.    0.    0.02  0.02  0.    0.02  0.
  0.04  0.    0.02  0.    0.12  0.02  0.    0.02  0.    0.    0.    0.    0.1
  0.    0.06  0.02  0.    0.    0.04  0.02  0.    0.    0.    0.02  0.    0.
  0.    0.    0.14  0.    0.    0.02  0.    0.    0.    0.02  0.    0.
  0.02  0.    0.    0.02  0.02  0.06  0.    0.    0.    0.  ]
2017-08-06 21:00:00 	refes: (2823, 86) 	subjects: (60, 86) 	auc: 0.497048406139
93
auc_score =  0.524235865145 	feature importances: [ 0.    0.    0.    0.    0.    0.02  0.    0.04  0.    0.02  0.    0.
  0.04  0.02  0.    0.    0.02  0.02  0.02  0.    0.    0.    0.    0.    0.
  0.    0.    0.04  0.    0.    0.    0.    0.02  0.02  0.04  0.    0.02
  0.    0.02  0.    0.02  0.    0.08  0.02  0.    0.    0.    0.    0.    0.
  0.16  0.04  0.04  0.02  0.    0.    0.06  0.    0.    0.    0.    0.    0.
  0.    0.    0.    0.06  0.    0.    0.    0.02  0.    0.    0.02  0.    0.
  0.    0.    0.02  0.    0.04  0.02  0.    0.02  0.    0.  ]
2017-08-06 22:00:00 	refes: (2823, 86) 	subjects: (60, 86) 	auc: 0.524235865145
94
auc_score =  0.499409681228 	feature importances: [ 0.    0.    0.    0.    0.    0.02  0.    0.04  0.    0.02  0.    0.    0.
  0.    0.    0.    0.    0.04  0.02  0.02  0.    0.    0.    0.    0.    0.
  0.    0.    0.    0.    0.    0.    0.    0.02  0.02  0.    0.02  0.
  0.04  0.    0.02  0.    0.06  0.    0.    0.02  0.    0.    0.    0.
  0.18  0.02  0.02  0.04  0.    0.    0.06  0.04  0.    0.    0.    0.02
  0.    0.    0.    0.    0.16  0.    0.    0.    0.    0.    0.    0.    0.
  0.    0.    0.    0.    0.02  0.04  0.02  0.    0.02  0.    0.  ]
2017-08-06 23:00:00 	refes: (2823, 86) 	subjects: (59, 86) 	auc: 0.499409681228
95
auc_score =  0.5 	feature importances: [ 0.    0.    0.02  0.    0.    0.04  0.    0.04  0.04  0.02  0.04  0.    0.
  0.    0.    0.    0.02  0.04  0.02  0.    0.    0.    0.    0.    0.    0.
  0.    0.02  0.    0.    0.    0.    0.    0.    0.04  0.    0.04  0.02
  0.02  0.    0.04  0.    0.04  0.    0.02  0.02  0.    0.    0.    0.
  0.04  0.04  0.04  0.04  0.    0.    0.04  0.04  0.    0.    0.    0.    0.
  0.02  0.    0.    0.04  0.    0.    0.    0.    0.    0.    0.    0.    0.
  0.02  0.    0.    0.04  0.04  0.04  0.    0.    0.02  0.  ]
2017-08-07 00:00:00 	refes: (2822, 86) 	subjects: (18, 86) 	auc: 0.5
96
auc_score =  0.55496031746 	feature importances: [ 0.    0.    0.    0.    0.    0.    0.    0.04  0.    0.    0.    0.
  0.02  0.02  0.    0.    0.    0.04  0.    0.    0.    0.    0.    0.    0.
  0.    0.    0.1   0.    0.    0.    0.    0.    0.    0.04  0.    0.04
  0.    0.02  0.    0.02  0.02  0.04  0.02  0.    0.02  0.    0.    0.    0.
  0.14  0.02  0.06  0.02  0.    0.    0.04  0.    0.    0.    0.    0.    0.
  0.    0.    0.    0.14  0.    0.    0.04  0.    0.    0.    0.    0.    0.
  0.    0.    0.    0.02  0.04  0.02  0.    0.02  0.    0.  ]
2017-08-07 01:00:00 	refes: (2799, 86) 	subjects: (60, 86) 	auc: 0.55496031746
97
auc_score =  0.550198412698 	feature importances: [ 0.    0.    0.    0.    0.    0.02  0.    0.04  0.    0.02  0.02  0.    0.
  0.02  0.    0.    0.02  0.06  0.04  0.    0.    0.    0.    0.    0.    0.
  0.    0.02  0.    0.    0.    0.    0.    0.02  0.02  0.    0.06  0.
  0.02  0.02  0.    0.    0.02  0.    0.    0.02  0.    0.    0.    0.    0.1
  0.08  0.04  0.06  0.    0.    0.06  0.04  0.    0.    0.    0.02  0.    0.
  0.    0.    0.04  0.    0.    0.    0.    0.    0.    0.    0.    0.
  0.02  0.    0.02  0.02  0.    0.02  0.02  0.02  0.    0.  ]
2017-08-07 02:00:00 	refes: (2799, 86) 	subjects: (60, 86) 	auc: 0.550198412698
98
auc_score =  0.498214285714 	feature importances: [ 0.    0.    0.    0.    0.02  0.04  0.    0.04  0.02  0.    0.02  0.    0.
  0.02  0.    0.    0.02  0.08  0.    0.    0.    0.    0.    0.    0.    0.
  0.    0.02  0.    0.    0.    0.02  0.02  0.02  0.    0.    0.06  0.
  0.06  0.02  0.02  0.    0.04  0.02  0.    0.    0.    0.    0.    0.
  0.14  0.02  0.04  0.02  0.    0.    0.02  0.02  0.    0.    0.    0.    0.
  0.    0.    0.    0.08  0.    0.    0.    0.    0.    0.    0.02  0.    0.
  0.    0.    0.    0.02  0.02  0.02  0.    0.02  0.    0.  ]
2017-08-07 03:00:00 	refes: (2799, 86) 	subjects: (60, 86) 	auc: 0.498214285714
99
auc_score =  0.499404761905 	feature importances: [ 0.    0.    0.02  0.    0.    0.04  0.02  0.1   0.    0.02  0.02  0.    0.
  0.    0.    0.    0.    0.04  0.02  0.02  0.    0.    0.    0.    0.    0.
  0.    0.02  0.    0.    0.    0.02  0.04  0.02  0.02  0.    0.    0.
  0.02  0.    0.02  0.04  0.04  0.02  0.    0.02  0.    0.    0.    0.    0.1
  0.02  0.04  0.02  0.    0.    0.02  0.02  0.    0.    0.    0.    0.    0.
  0.    0.    0.04  0.    0.    0.02  0.    0.    0.    0.02  0.    0.
  0.02  0.    0.02  0.02  0.02  0.02  0.    0.02  0.    0.  ]
2017-08-07 04:00:00 	refes: (2799, 86) 	subjects: (60, 86) 	auc: 0.499404761905
100
auc_score =  0.49880952381 	feature importances: [ 0.    0.    0.    0.    0.    0.02  0.    0.04  0.    0.02  0.    0.    0.
  0.04  0.    0.    0.    0.02  0.04  0.    0.    0.    0.    0.    0.    0.
  0.    0.02  0.08  0.    0.    0.    0.02  0.02  0.04  0.    0.02  0.
  0.02  0.    0.    0.    0.02  0.    0.    0.02  0.    0.    0.    0.
  0.04  0.02  0.04  0.16  0.    0.    0.04  0.02  0.    0.    0.    0.02
  0.    0.    0.    0.    0.06  0.    0.    0.02  0.    0.    0.    0.02
  0.    0.    0.04  0.    0.02  0.    0.02  0.02  0.    0.    0.02  0.  ]
2017-08-07 05:00:00 	refes: (2799, 86) 	subjects: (60, 86) 	auc: 0.49880952381
101
auc_score =  0.524801587302 	feature importances: [ 0.    0.    0.02  0.    0.    0.02  0.    0.04  0.    0.02  0.    0.    0.
  0.    0.    0.    0.    0.04  0.02  0.    0.    0.    0.    0.    0.    0.
  0.    0.06  0.    0.    0.    0.    0.    0.02  0.02  0.    0.    0.
  0.02  0.    0.02  0.04  0.06  0.    0.    0.02  0.    0.    0.    0.
  0.06  0.02  0.04  0.12  0.    0.    0.02  0.04  0.    0.    0.    0.02
  0.    0.02  0.    0.    0.1   0.    0.    0.04  0.    0.    0.    0.    0.
  0.    0.02  0.    0.    0.02  0.02  0.04  0.    0.    0.    0.  ]
2017-08-07 06:00:00 	refes: (2799, 86) 	subjects: (60, 86) 	auc: 0.524801587302
102
auc_score =  0.522420634921 	feature importances: [ 0.    0.    0.    0.    0.    0.02  0.    0.02  0.    0.    0.    0.
  0.02  0.    0.    0.04  0.    0.02  0.04  0.02  0.    0.    0.    0.    0.
  0.    0.    0.04  0.    0.    0.    0.    0.    0.    0.02  0.    0.    0.
  0.04  0.02  0.02  0.    0.02  0.    0.    0.02  0.    0.    0.    0.
  0.12  0.    0.14  0.1   0.    0.    0.02  0.04  0.    0.    0.    0.    0.
  0.    0.    0.    0.1   0.    0.    0.    0.02  0.    0.    0.    0.    0.
  0.02  0.    0.02  0.    0.02  0.02  0.    0.02  0.    0.  ]
2017-08-07 07:00:00 	refes: (2799, 86) 	subjects: (60, 86) 	auc: 0.522420634921
103
auc_score =  0.499404761905 	feature importances: [ 0.    0.    0.02  0.    0.    0.02  0.02  0.04  0.02  0.    0.    0.    0.
  0.    0.    0.    0.02  0.02  0.02  0.    0.    0.    0.    0.    0.    0.
  0.    0.02  0.    0.    0.    0.02  0.02  0.02  0.02  0.    0.    0.
  0.02  0.    0.02  0.    0.1   0.02  0.    0.02  0.    0.    0.    0.
  0.14  0.    0.04  0.06  0.    0.    0.04  0.04  0.    0.    0.    0.02
  0.    0.    0.    0.    0.08  0.    0.    0.    0.02  0.    0.    0.    0.
  0.    0.02  0.    0.    0.02  0.04  0.02  0.    0.    0.    0.  ]
2017-08-07 08:00:00 	refes: (2799, 86) 	subjects: (60, 86) 	auc: 0.499404761905
104
auc_score =  0.527182539683 	feature importances: [ 0.    0.    0.    0.    0.    0.04  0.    0.02  0.02  0.02  0.    0.    0.
  0.02  0.    0.    0.02  0.02  0.02  0.02  0.    0.    0.    0.    0.    0.
  0.    0.02  0.    0.    0.    0.    0.    0.    0.02  0.    0.02  0.06
  0.02  0.    0.02  0.    0.02  0.    0.    0.    0.    0.    0.    0.
  0.08  0.06  0.06  0.08  0.    0.    0.02  0.02  0.    0.    0.    0.02
  0.    0.    0.    0.    0.12  0.    0.    0.02  0.    0.    0.    0.    0.
  0.    0.    0.    0.02  0.    0.06  0.02  0.    0.02  0.02  0.  ]
2017-08-07 09:00:00 	refes: (2799, 86) 	subjects: (60, 86) 	auc: 0.527182539683
105
auc_score =  0.49880952381 	feature importances: [ 0.    0.    0.    0.    0.    0.02  0.    0.02  0.02  0.02  0.    0.    0.
  0.02  0.    0.    0.    0.04  0.02  0.    0.    0.    0.    0.    0.    0.
  0.    0.02  0.    0.    0.    0.    0.    0.    0.04  0.    0.04  0.
  0.02  0.    0.02  0.    0.08  0.    0.02  0.02  0.    0.    0.    0.    0.1
  0.02  0.08  0.    0.    0.    0.02  0.04  0.    0.    0.    0.    0.
  0.02  0.    0.    0.14  0.    0.    0.02  0.04  0.    0.    0.    0.    0.
  0.    0.    0.02  0.02  0.02  0.02  0.    0.02  0.    0.  ]
2017-08-07 10:00:00 	refes: (2799, 86) 	subjects: (60, 86) 	auc: 0.49880952381
106
auc_score =  0.552579365079 	feature importances: [ 0.    0.    0.    0.    0.    0.02  0.02  0.04  0.02  0.02  0.    0.    0.
  0.    0.    0.02  0.    0.04  0.    0.    0.    0.    0.    0.    0.    0.
  0.    0.02  0.    0.    0.    0.    0.    0.    0.02  0.    0.    0.
  0.02  0.    0.02  0.    0.06  0.    0.    0.02  0.    0.    0.    0.
  0.14  0.08  0.04  0.06  0.    0.    0.02  0.02  0.    0.    0.    0.02
  0.    0.    0.    0.    0.04  0.    0.    0.08  0.02  0.    0.    0.    0.
  0.    0.02  0.    0.04  0.02  0.02  0.02  0.    0.02  0.    0.  ]
2017-08-07 11:00:00 	refes: (2799, 86) 	subjects: (60, 86) 	auc: 0.552579365079
107
auc_score =  0.579761904762 	feature importances: [ 0.    0.    0.    0.    0.    0.    0.    0.02  0.02  0.    0.    0.    0.
  0.02  0.    0.    0.    0.04  0.02  0.    0.    0.    0.    0.    0.    0.
  0.    0.02  0.    0.    0.    0.    0.    0.    0.02  0.    0.04  0.02
  0.02  0.    0.02  0.    0.08  0.    0.    0.02  0.    0.    0.    0.
  0.12  0.1   0.06  0.04  0.    0.    0.06  0.02  0.    0.    0.    0.02
  0.    0.    0.    0.    0.04  0.    0.    0.04  0.    0.    0.    0.04
  0.    0.    0.    0.    0.02  0.02  0.    0.02  0.    0.04  0.    0.  ]
2017-08-07 12:00:00 	refes: (2799, 86) 	subjects: (60, 86) 	auc: 0.579761904762
108
auc_score =  0.690873015873 	feature importances: [ 0.    0.    0.    0.    0.    0.02  0.    0.02  0.02  0.    0.    0.    0.
  0.    0.    0.    0.    0.    0.    0.    0.    0.    0.    0.    0.
  0.02  0.    0.    0.    0.    0.    0.02  0.04  0.    0.02  0.    0.02
  0.    0.    0.    0.    0.    0.08  0.    0.    0.    0.    0.    0.02
  0.    0.22  0.04  0.04  0.06  0.    0.    0.1   0.02  0.    0.    0.    0.
  0.    0.02  0.    0.    0.08  0.    0.    0.02  0.    0.    0.    0.02
  0.    0.    0.    0.    0.    0.02  0.04  0.    0.02  0.02  0.    0.  ]
2017-08-07 13:00:00 	refes: (2799, 86) 	subjects: (60, 86) 	auc: 0.690873015873
109
auc_score =  0.802579365079 	feature importances: [ 0.    0.    0.    0.    0.    0.02  0.02  0.08  0.    0.02  0.    0.    0.
  0.    0.    0.    0.    0.06  0.    0.    0.    0.    0.    0.    0.    0.
  0.    0.    0.    0.    0.    0.    0.    0.    0.    0.    0.06  0.
  0.02  0.    0.    0.    0.12  0.    0.02  0.    0.    0.    0.    0.
  0.08  0.26  0.06  0.02  0.    0.    0.    0.    0.    0.    0.    0.    0.
  0.    0.    0.    0.1   0.    0.    0.02  0.    0.    0.    0.    0.    0.
  0.    0.    0.    0.02  0.    0.02  0.    0.    0.    0.  ]
2017-08-07 14:00:00 	refes: (2799, 86) 	subjects: (60, 86) 	auc: 0.802579365079
110
auc_score =  0.71746031746 	feature importances: [ 0.    0.    0.    0.    0.    0.02  0.    0.04  0.    0.    0.    0.    0.
  0.    0.    0.    0.    0.06  0.02  0.    0.    0.    0.    0.    0.    0.
  0.    0.04  0.    0.    0.    0.    0.    0.    0.02  0.    0.02  0.
  0.02  0.    0.02  0.    0.1   0.    0.02  0.    0.    0.    0.    0.
  0.14  0.22  0.06  0.02  0.    0.    0.02  0.    0.    0.    0.    0.02
  0.    0.02  0.    0.    0.06  0.    0.    0.    0.    0.    0.    0.02
  0.    0.    0.    0.    0.    0.    0.02  0.    0.    0.02  0.    0.  ]
2017-08-07 15:00:00 	refes: (2799, 86) 	subjects: (60, 86) 	auc: 0.71746031746
111
auc_score =  0.693253968254 	feature importances: [ 0.    0.    0.    0.    0.    0.02  0.    0.06  0.    0.04  0.    0.    0.
  0.    0.    0.    0.    0.06  0.02  0.    0.    0.    0.    0.    0.    0.
  0.    0.02  0.    0.    0.    0.    0.    0.    0.02  0.    0.02  0.
  0.04  0.    0.04  0.    0.1   0.    0.02  0.    0.    0.    0.    0.
  0.08  0.22  0.02  0.02  0.    0.    0.02  0.02  0.    0.    0.    0.    0.
  0.    0.    0.    0.08  0.    0.    0.02  0.    0.    0.    0.02  0.    0.
  0.    0.    0.    0.02  0.    0.02  0.    0.    0.    0.  ]
2017-08-07 16:00:00 	refes: (2799, 86) 	subjects: (60, 86) 	auc: 0.693253968254
112
auc_score =  0.581547619048 	feature importances: [ 0.    0.    0.    0.    0.    0.02  0.    0.04  0.02  0.    0.    0.02
  0.    0.    0.    0.    0.    0.06  0.02  0.    0.    0.    0.    0.    0.
  0.    0.    0.02  0.    0.    0.    0.    0.    0.    0.02  0.    0.02
  0.    0.08  0.    0.02  0.    0.06  0.    0.02  0.    0.    0.    0.    0.
  0.12  0.08  0.06  0.02  0.    0.    0.04  0.    0.    0.    0.    0.02
  0.    0.    0.    0.    0.08  0.    0.    0.04  0.    0.    0.    0.02
  0.    0.    0.    0.    0.    0.02  0.04  0.04  0.    0.    0.    0.  ]
2017-08-07 17:00:00 	refes: (2799, 86) 	subjects: (60, 86) 	auc: 0.581547619048
113
auc_score =  0.578571428571 	feature importances: [ 0.    0.    0.02  0.    0.    0.02  0.    0.1   0.    0.02  0.    0.02
  0.    0.    0.    0.    0.    0.06  0.    0.    0.    0.    0.    0.    0.
  0.    0.    0.02  0.    0.    0.    0.    0.    0.    0.02  0.    0.02
  0.    0.08  0.    0.02  0.    0.06  0.    0.02  0.02  0.    0.    0.    0.
  0.1   0.14  0.04  0.02  0.    0.    0.06  0.    0.    0.    0.    0.02
  0.    0.02  0.    0.    0.04  0.    0.    0.    0.02  0.    0.    0.02
  0.    0.    0.    0.    0.    0.    0.    0.02  0.    0.    0.    0.  ]
2017-08-07 18:00:00 	refes: (2799, 86) 	subjects: (60, 86) 	auc: 0.578571428571
114
auc_score =  0.526587301587 	feature importances: [ 0.    0.    0.    0.    0.    0.04  0.    0.06  0.    0.02  0.    0.    0.
  0.    0.    0.    0.    0.06  0.02  0.    0.    0.    0.    0.    0.    0.
  0.    0.02  0.    0.    0.    0.    0.    0.    0.02  0.    0.02  0.
  0.06  0.    0.    0.02  0.04  0.02  0.02  0.02  0.    0.    0.    0.
  0.08  0.04  0.02  0.04  0.    0.    0.02  0.04  0.    0.    0.    0.    0.
  0.    0.    0.    0.14  0.    0.    0.06  0.    0.    0.    0.02  0.    0.
  0.02  0.    0.    0.02  0.02  0.02  0.    0.02  0.    0.  ]
2017-08-07 19:00:00 	refes: (2799, 86) 	subjects: (60, 86) 	auc: 0.526587301587
115
auc_score =  0.49880952381 	feature importances: [ 0.    0.    0.    0.    0.    0.    0.    0.04  0.    0.04  0.    0.    0.
  0.    0.    0.    0.    0.02  0.    0.    0.    0.    0.    0.    0.    0.
  0.    0.02  0.04  0.    0.    0.    0.    0.    0.02  0.    0.02  0.
  0.02  0.    0.02  0.    0.06  0.02  0.    0.    0.    0.    0.02  0.
  0.12  0.06  0.08  0.02  0.    0.    0.02  0.02  0.    0.    0.    0.    0.
  0.    0.    0.    0.1   0.    0.    0.06  0.    0.    0.    0.06  0.    0.
  0.02  0.    0.    0.02  0.04  0.02  0.    0.02  0.    0.  ]
2017-08-07 20:00:00 	refes: (2799, 86) 	subjects: (60, 86) 	auc: 0.49880952381
116
auc_score =  0.775992063492 	feature importances: [ 0.    0.    0.    0.    0.    0.06  0.    0.06  0.02  0.    0.    0.
  0.02  0.    0.    0.    0.    0.1   0.02  0.    0.    0.04  0.    0.    0.
  0.    0.    0.    0.    0.04  0.    0.    0.    0.    0.02  0.    0.02
  0.    0.02  0.    0.    0.    0.1   0.    0.    0.    0.    0.    0.    0.
  0.2   0.02  0.02  0.02  0.    0.    0.    0.    0.    0.    0.    0.    0.
  0.    0.    0.    0.02  0.    0.    0.08  0.    0.    0.    0.02  0.    0.
  0.    0.    0.    0.    0.02  0.06  0.    0.02  0.    0.  ]
2017-08-07 21:00:00 	refes: (2799, 86) 	subjects: (60, 86) 	auc: 0.775992063492
117
auc_score =  0.858134920635 	feature importances: [ 0.    0.    0.    0.    0.    0.02  0.    0.06  0.02  0.04  0.    0.    0.
  0.    0.    0.    0.    0.04  0.04  0.    0.    0.    0.    0.    0.    0.
  0.    0.02  0.    0.12  0.    0.02  0.02  0.02  0.02  0.    0.02  0.
  0.02  0.    0.    0.    0.02  0.    0.02  0.    0.    0.    0.    0.
  0.06  0.04  0.1   0.02  0.    0.    0.04  0.    0.    0.    0.    0.02
  0.    0.02  0.    0.    0.02  0.    0.    0.04  0.02  0.    0.    0.    0.
  0.    0.    0.    0.    0.02  0.02  0.02  0.02  0.02  0.    0.  ]
2017-08-07 22:00:00 	refes: (2799, 86) 	subjects: (60, 86) 	auc: 0.858134920635

In [13]:
df.plot(figsize=(20,7))


Out[13]:
<matplotlib.axes._subplots.AxesSubplot at 0x7f318032ca58>

In [14]:
fig, ax = plt.subplots(figsize=(20,7))
auc_df['Detected'] = 0
auc_df.loc[auc_df.auc_score>cut, ['Detected']]=1
ax.plot( auc_df.auc_score,'g')
ax.fill( auc_df.Detected, 'b', alpha=0.3)
ax.legend(loc='upper left')
plt.show()



In [ ]: